C-Control Pro
Mega Series

© 2011 Conrad Electronic

I C-Control Pro Mega Series

Table of Contents

Part 1 Important Notes 2
L INEFOTUCTION Lot e ettt et e e et et et e ea s 2
2 Reading this operating ManUAalcoiiiiiiii e 2
B HANAIING i e 2
v a1 =T o Lo 1= To BT T PP 3
5 Warranty and Liability ..o 3
LTS 1= VT o = 4
A O oT=T g BT o U | o = PP 4
ST o =1 (o Y/ 4

Part 2 Installation 11
1 APPHCAtIONDOAIT ..ceiiei e 11
S 1o A1V PP 15

Part 3 Hardware 17
O 0 TV 17
2 O 0 I 1V F-) PP 19
3 MEQAB2 MOTUIE .t 19
30 R 1 = U PP 22
G AN o o T 1= 0 23
3.3 CONNECLION DIAGIAIM ..ottt ettt e e e eeens 25
4 MeQAal28 MOTUIE ... e e e e e e e 25
O U PP 29
o 1 IS o 1T 4= o S 30
4.3 CONNECHION DIAGIAIM ...iiiiiiii ettt e e e e e en s 32
5 Megal28 CAN MOTUIE ... e e e 32
70 R O = PP 36
Lo AN o o T 1= 0 37
5.3 CONNECLION DIAGIAIM ©..uiiiiiii ettt ettt et e e eaens 39
6 Mega32 Application BOArdcciiiiiiiiii e 39
6.1 Jumper Application BOArdc.ooouiiiiiiii e 43
6.2 CONNECHION DIAGIAM L.uuiieiii e e e et r e e e e e e e e et e e e e e e e e eaneeenes 45
6.3 CoMPONENt PArtS PIAN o.o.uiiiiiiiee et 48
7 Megal28 Application BOArdcccooeuiiiiiiii e 49
7.1 Jumper Application BOArdcc.ooouiiiii e 52

© 2011 Conrad Electronic

Inhalt I

A2 ©o T o | Y=ok (o o T 1= Yo | =1 oo 55
7.3 CompPoNeNnt PArtS PIANcoeuiiiiiiii et 57
8 Mega32 ProjeCthOardc..oiiiiiiii i 58
9 Megal28 ProjeCthOardoovuiiieiiiie e 60
Part 4 IDE 64
N o 1= o3 £ 65
O A O Y- 1 T o o] = £ 65
O oY 1 0 o 1 =T = e = o £ 65
1.3 Project ManagemeENTt ... oo it 66
1.4 THread OPtiONS ...ttt et et et 67
ST o oY =Y od @ o4 o] E= 68
1.6 Library ManagemeEnt ... e e 69
2 o | 1 o T 70
2.1 EditOr FUNCHIONS oottt et et et e e et e e eanns 72
2.2 PrINE PrOVIEW oottt et et et aans 73
2.3 Keyboard SHOMCULSo e e e e e e 74
2.4 REQUIAT EXPIrESSIONS c..uieiiiii ettt ettt et ettt et e e 76
3 C-CONLIOl HAMAWAIE ..eeeeeiee ettt et e e e e eanas 76
1 J0 R Y =Y A o e T 1 = o 77
C J0 A © 11 11 o 11| £ 78
TG T o 1V B Yo £ Yo = 78
3.4 VErSiON CRECK ..oui et e 79
R =T o 11 o o - PPN 79
o R = Y == 1 4 o o]] £ 80
4.2 AITAY WINAOW L.ttt ettt ettt et e et r e e e e e e e e een s 81
4.3 Variable WatCh WINUOW ... e 82
LI o Lo £ PSPPI 84
L o) (o] 85
L A o [(o ST = 1] g o 1 PSPPSRI 85
6.2 Syntax Highlightingcoouiiiiiii e 86
6.3 COMPIlEr PreSBtliNg iiouiiniii i 88
L 1 Y= 41 o = 89
A AV Lo Lo 11 93
. T 1 1 T 94
Part 5 Compiler 97
I T = = L o= LU 97
O R Q1 g = I N Y 97
I e €= o] o Lo o | PP 97

© 2011 Conrad Electronic

1l C-Control Pro Mega Series
S I o = Yo 4o = W B U] o T B 99
L4 VAP Bl e 99
P2 ©70 Y1 1] 1Yo { O3PSO 100
P R o o To | = o PP PTPRPTPRR 100
2.2 INSITUCTIONS oottt ettt et et et et e et e e e e eaa e 101
2.3 DAl TP S i 103
2.4 VAADIES o 104
S O o T=T -1 o] = TP RPTPRPTPRR 108
2.6 CONIOl STTUCTUIES ...ttt et ettt et e et e e e eaa e 111
2 A ¥ Tox € o o S 116
2.8 TAD I N e e 119
G = 7 0 Y PP 122
C J0 R o oo | = 1 o PP PRPTPRN 122
I | 111 1 Tex £ o] 0 S 123
G T B B - U = W I/ 0 <X PSPPI 125
Bid VAKADIES e 125
R O o 1=T -1 0] £ TP PTPRPTPRN 129
I I Oo T o I o]] £ U o (1] == 132
L7 FUNCHIONS ottt e et et a e 137
e TS e 140
O ST C 1 4] 142
A1 AN EXAMPIE s 142
4.2 DaAlA ACCESS uiitii ittt et aa e 144
4.3 GUIAEIINE ettt 146
L N T O 1 I Y o 1 P 146
Part 6 Libraries 153
1 INtErNal FUNCLIONS ..ttt e e e e e eanas 153
2 GBNEIAL it 153
220 T A o 1= 0 1= I 153
2 2 Sl BB ittt 154
I AN o F= o Yo Rl @0 Y ¢ o T- V= L (o (S 154
C F0 R @{o] 1 11 o PP PRPTPRR 154
3.2 ACOMP EXAMPIE e 155
4 ANalog-Digital-CONVEITET .. iuitiieii e e en 156
4.1 ADC DiSADIE ..oouiiiiiiiii et 157
A S\ O = (= T- Lo PR 157
I AN T @ = (= - Yo o 158
N O Y 158
I O Y= [} S PR 159

© 2011 Conrad Electronic

Inhalt v

4.6 ADC_SEATTINT oottt 160
L O N L\ = T PP 160
LT R 7 I A o= U0 o] = PPN 162
I O N V1 APPSR 163
5.3 CAN_GELINTO «iiiiiiei it aaaa 163
L3 S @ LNV 1 o 1 164
TS 07 N A =T o= V7 TP 165
L S 7 N AV @] ¢ ST o o PP 166
B.7 CAN_SEIMOD ..ot e 166
LS o T o] PSRRI 167
6.1 ClOCK _GEIVAI .uiiiiniiii e e e 167
(S O Lo Tod S Y= 4 - = N 168
LSRG T O o Tt QS Y= A T 12 =S 168
7 L1 i PP 169
8 R T e = = N 1Y PP 170
7 11 |] N PP 171
RS T 0 L i = O S PRSPPI 171
A S 1O S I 2 172
7.5 DCF_SYNC .oiiiiiiiiiiet ittt et ettt e e e e e et e e e e e et e et e anaan 172
S T =Y o LU o N 172
S 00 Y=o T AV 1 (=Y O o - 1 S 173
8.2 MSO_WIITEFIOAL ...ttt 173
8.3 MSO B HE X 1 enitiiiii e et e e e e e e aaas 173
8.4 MSO W Nt e 174
S TR 1Y (o TR AT 1 (= =G S 174
8.6 MSO_WIITEWOIT ...oeiiiiiiiie ettt et e e e e e 175
L I B 1 o] Yo o1 PP PTRPPR 175
9.1 DITACC_REAM ..oeiiiiii e 175
LS I L 7N o o AV 1 (- 176
O T T (@ Y PP 176
10.1 EEPROM_REAM ..uuuiiiiiii ettt ee et s et e ettt e e et e e e e et s e e e et e e e e eat e e e eaataaaees 176
10.2 EEPROM_REAAWOIT ...uiiiiiiiiieeiiiiieee it e ettt e e et e e ettt s e e et e e e e eat e e e eeaeaaaees 177
10.3 EEPROM_REAAFIOAL . .uuiiiiii ettt et e et e e e eae e eees 177
O TR o o (@ 1Y AV (= 178
10.5 EEPROM_WIHEWOIM ..uuiiiiiiiieeiiiie e ettt e et e e et s e e e et e e e e eat s e e eaaeaaeees 178
10.6 EEPROM _WIItEFIOAL ..ouiiiiici et e e e aas 179
5 O 179
5 000 O 1 o T 179
12.2 12C _REAU_ACK oottt e e e et a e aaa 180

© 2011 Conrad Electronic

C-Control Pro Mega Series

11.3 12C_REA_NACK ...ttt ettt e et e e et aeeeeat e aees 180
O 7 @ -V 180
T 1 O) 7 Y (1 [S SPPPTTPIN 181
G 1 O] (o] o PP PP 181
I A DT O 1Y 4 1 = PSPPSRI 182
11.8 12C StatUS TABI@ .oeeiiiiii e e 182
e T b O =V 11 o] = PP 183
D2 o1 (= U1 o) PP 183
12,1 EXt INEENADIE Lo e 184
12.2 EXt INIDISADIE ...oeiei e 185
2 I [o [T (@0 11 o | PP 185
2 | o S Y=] AV 4 =Y ot APPSR 186
12.5 TRQ EXAMPIE ittt e e 186
13 KEYDOAIA ..o 187
I A) Y/ 12T S SRS 187
132 K BY S AN Lttt 187
13.3 KeY _TranSIateKeY ..uien it 188
2 4 PP 188
14.1 LCD_ClEAILECD .iuuuiiiiiiiiieeiiiie e ettt e et e e et e e ettt e e e et e e e e et e e e e eat e eeeaataaaees 188
o I Ot T O =T] P 189
I S O B O 01 £=To] £ o PRSPPI 189
4.4 LCD _CUISOIPOS ..ottt ettt et e e e e eas 190
I T Tt T [o PSPPI 190
TA.6 LCD L OCAEE oeuiiiiii ittt 191
L4.7 LCD _SUDINIT oo e et e et e e et e eeeae e aees 191
I I Ot I T =) 4 = 192
14,9 LCD _WIECRNAT .uuuiiiiii ettt e e et e e et e e e e et e e e e et e e e eaataaaee 192
14.10 LCD _Writ€CT RRE QIS «.vuiiitiii ettt e e e e e e e e e e aaaas 192
14.11 LCD _WriteDataRegISIEr . ouuiiiiii i e e e e e e e anas 193
I I I O BT 1 (=Y o - 1 193
14.13 LCD WIE RO QIS euiiiiii i e e e e e e e e e ans 194
I A I OB I Y1V 1 (- 1= PP 194
14.15 LCD_WITEWOTA ..ttt ettt e ettt e e e et s e e e et e e e eeaaaeaees 194
L T 1Y =T o PP 195
15,1 FIo@ting PoOiNt oo e e e e e e e e e aas 195
T 1] (=T 1= PRSPPI 202
LT @ o = 203
16.1 ONEWITE _REAM ..ouiiii ittt et et e e et e e anas 203
16.2 ONEWITE RO ST ittt e e e 204

© 2011 Conrad Electronic

Inhalt VI

16.3 ONEWITE W coonii it e e et e e e et e e et e e e et e enaeanas 205
16.4 ONEWIre EXamPIe ..o 205
A o] R PP IPTUPTN 207
0 R o] = - 1 L 207
7 o] = = = 208
e T o] o = - Yo PP 209
17.4 POt _REAUBIT ..o e 210
ST o] A e T o | = P 211
S T o] G e T o | = = T R 211
A o] AT 1 = PP 212
17.8 POrt W e Bt e e e 213
e o] G == U] o] =P 214
S T 215
S 00 I = {0 J 1o V1 S 218
18.2 RCE _REAMT ..uuiiiiiii ettt et et e et e e e et e e e et e e e et e et a e e aaa 219
S B (@t Y 1V 4 1 PSP SUPPTTPPN 220
S T S 2 7 220
LS Tt I I Yo 1 220
19.2 Serial_DiSabIeoeiiii 222
19.3 Serial Nt oo e 222
19.4 Serial_INIt_TRQ couuuiiiii et e e ae 223
19.5 Serial_IRQ _INTO e e 224
19.6 Serial_REAM ... e 225
19.7 Serial_REAUEXT ... 225
IR Y= - | AT 1 = 226
R Y= = | AT § 1 = = P 226
19.10 Serial EXAmMPIE oo 227
19.11 Serial EXample (IRQ) .ouuiiuiiiiiiie e et 227
20 Y I 1< 1 o 227
20.1 SDC REtUIN VaIUES ..ceiitiiie e e e et e e een 229
20.2 SDC _FCIOSE iiittuietiiiiiee ettt e ettt e et e et e e et e e e e et e e e e et e e e et e e e e et e e e aaaaan 230
20.3 SDC _FOPEIM ettt ettt ettt e e ettt a e aaaan 230
20.4 SDC _FREAM . .oeviieiiiii ettt aaaa 231
20.5 SDC FSBEK otitiiii ettt ettt aa e 231
20.6 SDC _FSEtDAtETIME tuuiiiiiiieeiiiiie ettt ettt e e e e e et e e et e et e e e eaa e e e asan e eeannns 232
PO S YD L] - Y PP 232
20.8 SDC _FSYNC iiiiinieiiiiti ettt ettt ettt a e aaaas 233
20.9 SDC _FTIUNCALE ..uiiiitiiiie e e ettt e e e e e enas 234
b0 O S B T O VL | (PP 234

© 2011 Conrad Electronic

VI C-Control Pro Mega Series

20.11 SDC_GEIFTEE w.uueiiiii ettt ettt aaaas 235
20 0 17 T 1 1 P 235
20.13 SDC_MKDIT iitiieiiiiei ettt aaaa 236
20.14 SDC _RENAMIE ..ttt e e e e e e e 236
20.15 SDC_UNIINK oottt et 237
20.16 SD-Card EXAmPIe ..o 237
P ST oY Lo T PRSP 238
22 I A ST Yo T 1 1 S 239
20,2 S BIVO Sl ittt e 240
21.3 SEIVO EXAMPIE oo 241
72] = PP 241
22,1 SPI DISADIE e 241
22.2 SPI_ENADIE it e 242
22 TS = - (o 243
22.4 SPI_REAUBUT c.outici e 243
22,5 S P NI et 243
22,6 SPI WIITEBUT o ettt 244
P2 RS 1 £ 1 [PP PP PPT PPN 244
2 T R S | g O 1 01 o PRSP 244
P T | g ©7o] o VAP PTPRPTPRR 245
23,3 S il e e aaaa 245
23,4 SHE_ISAINUM o e 246
23,5 S ISAIPNA e 246
23,8 SHl L BN ittt 247
P2 T S Y (S = 4T | 1 PP 247
23.8 S _REAAFIOAL .. eeiiiiie e 248
23.9 S _REAAINT et aaas 249
23.10 St _REAANUIM ..o e e e e e e e e e e aean 249
22 T 5 Y 1 o 1= 250
23.12 S WHIEFIOAL ..o et e 250
P22 Tt T | AV ¢ 1 (= 1 o | PSP 251
b2 I 2 A | VA € (=X YL oY o S 251
23.15 St PNt EX @M PIE oo 252
b2 I 01 €= - Vo £ T PR PRS 252
24,1 TRrEAd _CYClES oiniiiiiiii e 254
b N o 1 =T Yo [= - S 255
24.3 THRread _INfO ..o 255
2 S 31 1= - Vo [1 256
24.5 TRIEAUA_LOCK ..iuitiiiiiiie et e e e e 256

© 2011 Conrad Electronic

Inhalt Vil
b I N o == Yo [Y1 0 1 = N 257
247 TRread _RESUME ... et e e e e e aneeen 257
24.8 Thread _Signal ... 257
b B N o =T Yo [- 1 o S 258
24.10 Thread _Wail ... e e e e e 258
24.11 Thread EXamMPle et 259
24.12 Thread EXamPle 2 ... 259
P22 11 1= S PP PPPTRPPTRUPPIRN 260
P T A V=Y o 7o TV 1= PSP 260
25.2 FrequenCy GENEIATION ... ettt ettt 261
25.3 FrequencCy MeEasSUIEmMENT ... et e e eaaans 262
25.4 Pulse Width ModUIAtION ... 262
25.5 Pulse & Period MEaSUIEMIENT iiuu ettt et et ea s 263
25.6 TIMeEr FUNCLIONS «.ouiit et e e et e e e e e e e e eeen 264
25.7 TIMer_DisSable ..o 265
b3 38 < T I 12 =Y G 1L N N S 265
25.9 TIimMEr_TOFRQ ...ouiiiiiiii ettt e et et et e e e et e e e e et e e e eaan e e eenens 265
b2 70 0 B T 4= o 10 [T= T {4 AN 266
b2 Y00 R T 4 =Y G 0] = PPN 267
25.12 TIimMeEI_TOPWM ...ttt ettt e et e e et e e e et e e e eaan e e eenens 267
b T e T T 4 = G 1015 - Y N 268
2514 TIMEE _TOSTOP . ietueiti ettt ettt ettt ettt 268
P T T T 0 =Y o WO T 0 = PPN 269
b2 300 T T 4= G 1 PP 270
25.17 TimMer_TLONT _INE ciiitiii ittt et e e e e e e e e e e eenens 270
b2 T < T T 4= I8 P 270
b TN T T T oY G I =) PP 271
b330 0 B T 4o =Y G 1 T~ {1V S 271
25.21 Timer_TLGEIPM ..ottt et 272
BT T =T N I8 272
ST T T 1 =Y G 1 = PPN 273
25.24 TimMeEI_TIPWB ..ottt r e et e e e e e aa e e aaens 273
25.25 TiMEI_TIPWM ..ottt e e et e e et e e enens 274
b T ST T 1 =T N I L G 274
25.27 TIiMEI_TIPWMY ..ottt ittt e e e e e e et e e e et e e e asa e eeanens 275
BT T T 4 XY G I S - Y S 276
BT I T ¢ = G I 1S (0 Y o S 276
b2 T 10 I T 0 o= S I T 2SS 276
ST 3 R T o1 =Y G TV PP 277

© 2011 Conrad Electronic

IX C-Control Pro Mega Series
ST v T 1 1= G T AV L o | A PRSPPI 277
25.33 TiMer_T3FRQ ..ouiiiitiii e e 278
25.34 TiM el _T3FROX ottt e et e aaas 279
P T 1S T T 4 o= G 1S 1= { XV S 279
25.36 Timer_T3GEIPM ..ottt 279
DA A T 0 1= N T Y P 280
25.38 TIM BT TP M ettt et e aaas 280
25.39 TiMEr_T3BPWWB .oiiiiiiiiii ettt e e e e 281
25,40 TIimMeET_T3PWM ..ottt e et e e et e et aeaaas 281
25,41 TimMEr T3P WX ittt et e e e e e e e e e e e e e anas 282
25.42 TiM el _T3PWWIMY oottt e e e e e e e e e e anns 283
DT o T T 4 Y=Y G 1S S - ¥ S 283
AT R T 1= G 1 1S {0 Y o S 284
ST L T 0 = G 1 T 02 284
25.46 Timer_TICKCOUNT ...ttt e e e e e e e e e e e e e anaanns 285
Part 7 FAQ 287

© 2011 Conrad Electronic

C-Control Pro Mega Series

1.1

1.2

1.3

Important Notes

This chapter deals with important information's to warranty, support and operation of the C-Control-
Pro hardware and software.

Introduction

The C-Control Pro Systems are based on the Atmel Mega 32 and the Atmel Mega 128 RISC
Microcontrollers, resp.. These Microcontrollers are used in large numbers in a broad variety of
devices from entertainment electronics through household appliances to various application facilities
in the industries. There the controller takes charge of important control tasks. C-Control Pro offers
this highly sophisticated technology to solve your controlling problems. You can acquire analog
measuring values and switch positions and provide corresponding switching signals dependent on
these input conditions, e. g. for Relais and servo motors. In conjunction with a DCF-77 radio antenna
C-Control Pro can receive the time with atomic accuracy and thus take over precise time switch
functions. Various hardware interfaces and bus systems allow the cross linking of C-Control Pro with
sensors, actors and other control systems. We want to provide a broad user range with our
technology. From our former work in C-Control senice we know that also customers without any
experience in electronics and programming but eager to learn are interested in C-Control. If you
happen to belong to this user group please allow us to give you the following advice:

C-Control Pro is only of limited use for the entry into programming of micro computers and electronic
circuit technique! We presuppose that you have at least a basic knowledge in a higher programming
language such as BASIC, PASCAL, C, C++ or Java. Furthermore we presume that you are used to
operating a PC under one of the Microsoft operating systems (98SE/NT/2000/ME/XP). You should
further be experienced in working with soldering irons, multimeters and electronic components. We
have made ewery effort to formulate all descriptions as simple as possible. Unfortunately we were not
able to do without the use of technical terms and expressions in an operating manual to the themes
involved here. If need be please see the appropriate technical literature.

Reading this operating manual

Please read this operating manual thoroughly prior to putting the C-Control Pro Unit into operation.
While seweral chapters are only of interest for the understanding of the deeper coherence's, others
contain important information's whose non-compliance may lead to malfunctions or even damages.

=¥ Chapters and paragraphs containing important themes are marked by a symbol.

Please read the entire manual prior to putting the unit into operation since it contains important
notes for correct operation. In case of damages to material or personnel caused by improper
handling or non-compliance to this operating manual the warranty claim will expire! We will further
not take liability for consequential damages.

Handling

The C-Control Pro Unit contains sensitive components. These can be destroyed by electrostatic
discharges! Please observe the general rules on handling electronic components. Please organize
your working bench professionally. Ground your body prior to any work being done, e. g. by
touching a grounded and conducting object (e. g. heating radiator). Awoid touching the connection
pins of the C-Control Pro Unit.

© 2011 Conrad Electronic

Important Notes 3

1.4 Intended use

The C-Control Pro Unit is an electronic device in the sense of an integrated circuit. It serves the
programmable controlling of electric and electronic equipment. Construction and operation of this
equipment must be in conformance with the valid European licensing principles (CE).

The C-Control Pro must not be galvanically connected to wltages exceeding the directed Extra
Low Protective Voltage. Coupling to systems with higher wltages must exclusively be performed
by use of components having VDE qualification. In doing so the directed air and leakage paths
must be obsened as well as sufficient precautions for protection against touching dangerous
wltages must be taken.

The PCB of the C-Control Pro Unit carries electronic components with high frequency clock
signals and steep pulse slopes. Improper use of the unit may lead to the radiation of electro-
magnetic interference signals. The adoption of proper measures (e. g. the use of chokes, limiting
resistors, blocking capacitors and shielding's) to ensure the observance of legally directed
maximum values lies in the responsibility of the user.

The maximum allowable length of connected wire lines is without additional precautions appr. 0.25
Meters (Exception: Serial Interface). Under influence of strong electro-magnetic alternating fields
or interference pulses the function of the C-Control Pro Unit can be detracted. If need be a reset or
a restart of the system may become necessary.

During connection of external sub-assemblies the maximum admissible current and wltage values of
the particular pins must be obserned. The connection of too high a wltage, a wltage of wrong
polarity or an excessive current load may lead to immediate damage of the unit. Please keep the C-
Control Pro Unit away from spray water or condensation dampness. Obsene the safe operating
temperature range in Item Technical Data in the attachment.

1.5 Warranty and Liability

For the C-Control Pro Unit Conrad Electronic grants a warranty period of 24 months from the date
of billing. Within this time period faulty units will be replaced free of charge if the fault provable
originates in faulty production or loss on goods in transit.

The software in the operating system of the Microcontroller as well as the PC software on CD-
ROM is shipped in the form as is. Conrad Electronic can not guarantee that the performance
features of this software will satisfy individual requirements and that this software will operate free
of faults and interruptions. Conrad Electronic can further not be held liable for damages occurring
directly by or consequently to the use of the C-Control Pro Unit. The use of the C-Control Pro Unit
in systems directly or indirectly sening medical, health or life saving objectives is not authorized.

In case the C-Control Pro Unit incl. software does not satisfy your demands or if you do not agree
to our warranty and liability conditions you are to make use of our 14 days money back guarantee.
Please return the unit without use marks, in the undamaged original packaging and incl. all
accessories within this time-limit to our address for refund or clearing of the value of goods!

© 2011 Conrad Electronic

C-Control Pro Mega Series

1.6

1.7

1.8

Service

Conrad Electronic provides you with a team of experienced senice technicians. If you have any
question with regard to our C-Control Pro Unit you can reach our Technical Senice by letter,
telefax or e-mail.

By letter Conrad Electronic SE

Technical Inquiry
Klaus-Conrad-Stral3e 2
D-92530 Wernberg-Koblitz

Fax-Nr.: 09604 / 40-8848
E-Mail: left webmaster@c-control.de

Please preferably use e-mail communication. If there is a problem possibly provide us with a
sketch of your connection diagram in form of an attached picture file (jpg format) as well as the
program source code reduced to the part referring to your problem (max. 20 lines). Further
information's and current software for download please find on the C-Control homepage under
www.c-control.de.

Open Source

When C-Control Pro was designed also open source software has come into operation:

ANTLR 2.73 leftleftleftleftleftleft http://www.antlr.org

Inno Setup 5.2.3 leftleftleftleft http://www.jrsoftware.org
GPP (Generic Preprocessor)
avra-1.2.3a Assembler leftleft http://awra.sourceforge.net/

http://www.nothingisreal.com/gpp

In accordance with the rules of "LESSER GPL" (www.gnu.org/copyleft/lesser) during installation of
the IDE also the original source code of the awa assembler, the generic pre-processor as well as the
source text of the modified version is supplied, which is used with C-Control Pro. Both source texts
are found in a ZIP file in the "GNU" sub-directory.

History

Version 2.12 from 01/06/2011

New Features

32-Bit Integer (only Megal28)

new multithreading with time slices

#thread parameter syntax in source

SD-Card support

CAN-Bus Support (only C-Control Pro 128 CAN)
direct access to Flash Arrays

Array Tooltips in Debugger

IDE Style changeable

Vista and Win7 Theme support

ask for transfer at program start option
increased serial speed for module communication

© 2011 Conrad Electronic

http://www.antlr.org
http://www.jrsoftware.org
http://www.nothingisreal.com/gpp
http://avra.sourceforge.net/

Important Notes

¢ VT100 Emulation for Terminal
¢ rand(), srand() randomize functions

Error Corrections

Documentation update

Translation errors fixed

Floats in tables now work

Corrected negative values in tables

Fixed constant expressions in parentheses
Corrected function calls made in return statements
"#pragma Warn" is now "pragma Warning"

Wrong editor undo after save fixed

Fixed bug in Serial_IRQ_Info

Fixed bug in serial program transfer

Problem in Servo-Routines corrected

External Interrupt Acknowledge now in correct order
Wrong upper limit at some TimerXTime() functions fixed
Clear all Breakpoints now works every time

Fixed problem crossing 64kb boundary

Fixed stopping program in debugger >64kb code
round() now works correctly

Problem in BASIC For-loops fixed

= Version 2.01 from 06/27/2009

New Features
¢ Added Search Function into Editor popupmenu

Error Corrections

Documentation update

Error at "unused Code Optimizer" corrected

Fixed internal handling of data crossing 64kb boundary

Fixed error when starting programs from Tools menu
Corrected translation bugs in Search dialog

Line offset fixed in Project Search

Timeout in I2C Routines

Fixed error message "...tbSetRowCount:new count too small"

= Version 2.00 from 05/14/2009

New Features

Assembler Support

Enhanced Search Functions in the Editor
New configurable GUI

Todo List

switchable Compiler Warnings

Program Transfer of Bytecode without Project
extended Program Info

Fast Transfer if Interpreter already on Module
Enhanced Auto-Completion of Keywords and Function Names
Function Parameter help

unused Code Optimizer

Peephole Optimizer

© 2011 Conrad Electronic

C-Control Pro Mega Series

Support for predefined Arrays in Flash Memory
Realtime Array Index check

Optimized Array Access

better verification of constant array indices

call functions with string constants

Enter binary numbers with Ob....

Addition und Subtraction of Pointers
Optimized Port OUT, PIN and DDR Access
Direct Atmel Register Access

Formatted String Output with Str_Printf()
convert ASCII strings in numerical values

++/-- for BASIC

Port toggle functions

RC5 Send and Receive Routines

Software Clock (Time & Date) with Quartz correction factor
Seno Routines

mathematical Round

Atmel Mega Sleep Function

Error Corrections

Initialization Timer_TOFRQ corrected
Initialization Timer_TOPWM corrected
Initialization Timer_T1FRQ corrected
Initialization Timer_T1FRQX corrected
Initialization Timer_T1PWM corrected
Initialization Timer_T1PWMX corrected
Initialization Timer_T1PWMXY corrected
Initialization Timer_T3FRQ corrected
Refresh for Array Window corrected
Desktop Reset corrected

Module Reset corrected

Bug in Debugfiles >30000 Bytes corrected
Bug in conditional valuation in CompactC fixed
Bug in Timer Disable() fixed

Version 1.72 from 10/22/2008

New Features
¢ added SPI functions
¢ RP6 AutoConnect

Error Corrections
¢ improved quality of serial transfers

Version 1.71 from 06/25/2008

New Features

new Editor in IDE

Editor shows all defined function names

Editor supports code folding

Simple serial Terminal

Pulldownmenu to start your own programs (Tool Quickstart)
Syntaxhighlighting of all standard library functions

© 2011 Conrad Electronic

Important Notes 7

Configuration of Syntaxhighlighting

Extension of Select .. Case in BASIC

Automatic case correction for keywords and library function names
Simple automatic lookup for keywords and library function names
OneWire Library Functions

Comments of Blocks in BASIC with /*, */

New FTDI driver

Error Corrections

Global For-Loop counter variables in BASIC work now correct

Char variables work now correct with negative numbers

"u" after an integer now defines unsigned number

Project names now can contain special characters

Thread_Wait() now supports thread parameter

return command in CompactC without return parameter was working wrong
Corrected swapped error messages when called functions with pointers
Corrected error message at assignment, when function had no return parameter
Nested switch/Select statements are working now

Very long switch/Select statements are functioning properly now

Better Error recovery when selected COM Port already in use

No longer a crash if very huge amounts of faulty data where transferred over USB or COM Port
"Exit" in BASIC For-Loops is working now

Compiler error corrected in declaration of array variables

= Version 1.63 from 12/21/2007

Error Corrections

Documentation update

= Version 1.62 from 12/08/2007

New Features

Vista Compatibility

Error Corrections

Brackets are working correctly

The compiler is no longer crashing when variable names are not known

There were sometimes incorrect syntax errors when opening some brace levels and a missing
operand

"Exit" don't worked correctly in BASIC For-Next loops

The array window could only be opened 16 times, even when some array windows were closed
Renamed the Text "Compiler" to "Compiler Defaults" in the Options Menu

= Version 1.60 from 03/04/2007

New Features

English language version of IDE - switchable at runtime
English language Compiler messages

English language version of help files and manual
printing of source code from the IDE

Print preview of source code

Thread_Wait() extended with thread parameter
ADC_Set() got a speedup

© 2011 Conrad Electronic

C-Control Pro Mega Series

DoubleClock mode can be activated in serial functions

Error Corrections

ExtIntEnable() was only working correct with IRQ 0 and 4

Serial_Init() und Serial_Init_IRQ() got wrongly a byte as divider instead of a word
EPROM_WriteFloat und EEPROM_ReadFloat() sometimes worked incorrect

Thread_Kill() worked erroneous when called from the main thread

read accesses from globally defined floating point arrays were faulty

The second serial interface was not working correctly

EEPROM write accesses that used illegal addresses could overwrite reserved data in
EEPROM

There was a chance with a very low probability that the LCD display content could get
corrupted

Version 1.50 from 11/08/2005

New Features

IDE Support for Megal28

Improved Cache Algorithm during IDE access to Transit Time Data in the Debugger

New Library Routines for Timer 3 (Megal28)

Programs using the extended (>64kb) Address Space (Megal28)

Supporting the external 64kb SRAM

Supporting the external Interrupts 3 - 7 (Megal28)

Routines for the 2. Serial Interface (Megal28)

Mathematical Functions (Megal28)

Display of Memory Volume when Interpreter is started

Internal RAM check for recognition when Global Variables too large for Main Memory
Interner RAM check for recognition when Thread Configuration too large for Main Memory
Transit Time Check if Stack Limits have been violated

Source Files can be moved up and down in the Project Hierarchy

Warning when Strings too long are assigned

On demand the Compiler creates a Map File describing the wvolume of all Program Variables
New Address model for Global Variables (the same Program runs at different RAM Volumes)
Interrupt Routines for Serial Interface (up to 256 Byte Receiver Buffer / 256 Byte Transmitter
Buffer)

Fixed wired IRQ Routines to allow Periode Measurement of small time intervals
Recursions are now usable without limits

Arrays of any size can now be displayed in a separate Window in the Debugger

Strings (character arrays) are now shown as Tooltip in the Debugger

SPI can be switched off in order to use the pins for I/O

The Serial Interface can be switched off in order to use the pins for I/O

The Hex value is now additionally shown as Tooltip in the Debugger

New Function Thread_MemFree()

Additional EEPROM Routines for Word and Floating Point access

Time Measurement with Timer_TickCount()

#pragma Commands to create Errors or Warnings

Pre-defined Symbol in Pre-Prozessor: _ DATE__, TIME__ __ FILE__, FUNCTION__,
__LINE__

Version Number in Splashscreen

Extended Documentation

Interactive Graphics at "Jumper Application Board" in Help File

New Demo Programs

Ctrl-F1 starts Context Help

© 2011 Conrad Electronic

Important Notes

Error Corrections

e An Error is created if the Return Command is missing at the end of a function

e Breakpoint Marks have not always been deleted

e Limits at EEPROM Access can now be checked closer (internal overflow seized)
¢ In the Debugger a single step can no longer depose the next command too early

= Version 1.39 from 06/09/2005

New Features

BASIC Support

CompactC and BASIC can be mixed in a project
Extended Documentation

Loop Optimizing for For - Next in BASIC
Threadinfo Function

New Demo Programs

Error Corrections

e Compiler does no longer break down at German Umlauts (&, 6, U)
¢ Internal Byte Code of command StoreRel32XT corrected

o Offset in String Table improved

= Version 1.28 from 04/26/2005

e [nitial Version

© 2011 Conrad Electronic

Installation 11

2 Installation

In this chapter the installation of hardware and software is described.

2.1 Applicationboard

Important Note on Inserting/ Retrieving a Mega Module

For the connection between Module and Application Board high quality connectors have been used
in order to ensure intimate contacts. Mounting and dismounting of a Module should only take place
during power-down condition (switched off wltage) since otherwise damages may occur to
Application Board and/ or Module resp. Because of the high number of contacts (40/ 64 Pins)
considerable force may be necessary to insert/ retrieve the Module. When inserting it must be
ensured that the Module is pressed into the socket evenly, i. e. not out of line. To do this the Module
should be placed onto an even surface. Mount the Module Mega32 in the correct orientation
obsening the marking for Pin 1. The label inscription will then point towards the control elements on
the Application Board

© 2011 Conrad Electronic

12

C-Control Pro Mega Series

Mounting Orientation of Module MEGA32

B3 Hal

s@wm o{illee{=1]e
i & §EFeeizTe O,
' ﬂ' & ;

18

s =0 TEE]
amm: = 8009

ZEVOTW

@)
_ 18

® immam:
t..l...l...l..lt.iltﬂﬂ

(A2 F R A X XN 1]
2900000000000 C0 00000000 RRRRS

soooOOOOOOOOOPOOODOOORDORDORORDD
ecePOOOOOOROOCOEORPDOROOOOOOPDOODS®
edso0O0OOOOPDOOOEOOSEOPOOOOCOOORRORDO

The connector of Module Mega32 has been designed in such a way that faulty insertion of the
Module is not possible. The dismounting of the Module is performed by carefully lifting it from the
socket by use of a suitable tool. In order to awid bending the contacts the liting of the Module
should take place from various sides.

Installation of the USB Drivers

Please connect the Application Board to an appropriate power supply. A Standard 9V/ 250mA Mains
Plug-in Power Supply will be sufficient. The polarity does not matter since it is automatically
corrected by means of diodes. Depending on additionally used components it may later become
necessary to use a power supply with higher output. Establish a connection between the Application
Board and your PC by use of a USB cable. Switch on the Application Board.

=» A Windows Operating System prior to Win98 SE ("Second Edition") will supposedly not allow a
reliable USB connection between PC and Application Board. From experience Microsoft's USB
drivers will only reliably work with all USB devices starting with WIin98SE. In such a case it is
recommended to either grade up to a more recent Operating System or use only the serial
connection to the Application Board.

If the Application Board is connected for the first time then there will be no driver for the FTDI chip.
The following window will then be shown under Windows XP.

© 2011 Conrad Electronic

Installation

Assistent fiir das Suchen neuer Hardware

Willkommen

Mit diesem Assisterten konnen Sie Software fur die folgende
Hardwarekomponents installiersn:

CAZontral Pro

F \J Falls die Hardwarekomponente mit einer CD
L4 oder Diskette geliefert wurde., legen Sie diese
P jciat cin

Wie machten Sie vorgehen?

) Software automatisch installieren {empfohlen)

{#) Software von einer Liste oder bestimmten Cuelle
installieren fur fortgeschrittene Benutzer)

Klicken Sie auf "Weiter”, um den Vorgang fortzusetzen.

13

Weiter = l [P.I:-I:ure-:hen

From here select "Install software from a list or other source" and click "Next"..

© 2011 Conrad Electronic

14

C-Control Pro Mega Series

Assistent fiir das Suchen neuer Hardware

Wahlen Sie die Such- und Installationsoptionen.

{®) Dieze Quellen nach dem zutreffendsten Treiber durcheuchen

Verwenden Sie die Kortrollkastchen, um die Standardsuche zu erweitem oder
einzuschranken. Lokale Pfade und Wechselmedien sind in der Standardsuche mit
einbegriffen. Der zutreffendste Treiber wird installiert .

[] Wechselmedien durchsuchen (Diskette, CD....)
Folgende Quelle ebenfalls durchsuchen:

-\ Programme\C-Control-Pro’FTDI USE Driver v| [Durchsuchen

") Nicht suchen, sondem den zu installierenden Treiber selbst wahlen

Verwenden Sie diese Option, um einen Geratetreiber aus einer Liste zu wahlen. Es wird
nicht garartiert, dass der von lhnen gewahlte Treiber der Hardware am besten entspricht.

< Zurick ” Weiter = l [Abbredﬁen

Then type in the path to the driver's directory. If the software has been installed to "C:\Programs" it
will be path "C:\Programs\C-Control-Pro\FTDI USB Driver".

Hardwareinstallation

AN

Die Software, die fur diese Hardware installiert wird:

C-Cortral Pro LUSB Device

hat den Windows-Logo-Test nicht bestanden, der die Kompatibilitat mit
Windows XP Gberprift. (#anm ist dieser Test wichtia)

Das Fortsetzen der Installation dieser Software kann die komekte
Funktion des Systems direkt oder in Zulanit beeintrachtigen.
Microsoft empfiehlt strengstens. die Installation jetzt abzubrechen
und sich mit dem Hardwarehersteller fur Software. die den
Windows-Logo-Test bestanden hat. in Verbindung zu setzen.

Installation fortsetzen] [Installation abbrechen]

© 2011 Conrad Electronic

Installation 15

The message "C-Control Pro USB Device has not passed the Windows Logo Test" will normally
appear. This does not mean that the driver has failed during the Windows Logo Test. It merely
means that the driver has not taken part in the (quite costly) Redmond Test.

Here click "Continue Installation". The USB driver should then be installed after a few seconds.

In the PC software click on IDE in menu Options and select the area Interfaces. Here select the
communication port "USBO".

=¥ The FTDI driver supports 32 bit and 64 bit operating systems. The specific drivers are located in
the "FTDI USB Driven\i386" and "FTDI USB Drive\amd64".

Serial Connection

Due to the slow transmitting speed of the serial interface the USB connection should preferably be
used. If however due to hardware grounds the USB interface is not available then the Bootloader can
be switched into the Serial Mode.

To do this the key SW1 has to be kept pressed during power-up of the Application Board. After this
the Serial Bootloader Mode will be activated.

In the PC software click on IDE in menu Options and select the area Interfaces. Here select the
communication port "COMXx", which fits to the PC interface connected to the Application Board.

2.2 Software

When the attached CD-ROM is inserted into the computer the Installer should be automatically
started in order to install the C-Control Pro software. If this is not the case because e. g. the
Autostart Function in Windows is not activated then please manually start the Installer 'C-
ControlSetup.exe' in the main directory of your CD-ROM.

=¥ For the time of software and USB driver installations the user must be registered as
administrator. During normal operation of C-Control Pro this is not necessary.

=¥ In order to maintain consistency of the demo program during installation on top of an existing
installation the old directory Demo Programs will be deleted and replaced by a new one. It is thus
recommended to install other programs outside the C-Control Pro directory.

At the beginning of the installation first select the language in which the installation should take
place. After that you can choose whether you want to install C-Control Pro into the standard path or
whether you want to specify your own target directory. At the end of the installation process you will
be asked if an icon should be created on your desktop.

When the installation process is completed you can choose whether you want to see the "ReadMe"
file, have the shortform introduction displayed or directly start the C-Control Pro design platform.

© 2011 Conrad Electronic

Hardware 17

3.1

Hardware

This chapter gives a description of the hardware coming into operation with the C-Control Pro series.
The Modules C-Control Pro Mega32 and C-Control Pro Megal28 will be described. Further chapters
will comment on construction and function of the accompanying application boards and LCD
modules as well as the keyboard.

Firmware

The operating system of C-Control Pro consists of the following components:

¢ Bootloader
e Interpreter

Bootloader

The Bootloader is available at any time. It senes the serial or USB communication with the IDE. By
use of command line commands the Interpreter and the user program can be transferred from the PC
to the Atmel Risc Chip. If a program is compiled and transferred to the Mega Chip the current
Interpreter is also transferred at the same time.

= |f instead of the USB interface a serial connection should be set up from the IDE to the C-
Control Pro module then the push button SW1 (Port M32:D.2 and M128:E.4 resp. at low level) must
be held pressed during power-up of the module. In this mode any communication will be directed
through the serial interface. This is useful when the module has already been incorporated into the
hardware application and the application board is thus not available. The serial communication
howewer is considerably slower than the USB connection. In serial mode the USB pins are not used
and are thus available to the user for other tasks.

= Since SW1 initiates the serial Bootloader during module start there should be no signal on Port
M32:D.2 and M128:E.4, resp. during power-up of the application since these ports are also usable
as outputs.

SPI Switch Off (only Megal28)
A signal on the SPI interface during switch on can activate USB communication. In order to awid

this PortG.4 (LED 2) can be set LOW during switch on. The SPI interface will then not be activated.
The SPI interface can also be manually be switched off by the Interpreter later on using SPI_Disable

0.

Interpreter

The Interpreter consists of the following components:
e Bytecode Interpreter

e Multithreading Support
¢ Interrupt Processing

© 2011 Conrad Electronic

18

C-Control Pro Mega Series

e User Functions
¢ RAM and EEPROM Interface

In general the Interpreter processes the bytecode generated by the Compiler. Further most library
functions are integrated into it in order to allow access of the bytecode program to e. g. the hardware
ports. The RAM and EEPROM Interfaces are used by the IDE’s Debugger to get access to the
variables when the Debugger is stopped at any Breakpoint.

Autostart

If no USB interface is connected and if SW1 has not been pressed during power-up in order to reach
the serial Bootloader mode then the Bytecode (if available) is started in the Interpreter. This means
that in case that the module is inserted into a hardware application the mere connection of the
operating wltage will suffice to automatically start the user program.

© 2011 Conrad Electronic

Hardware 19

3.2 LCD Matrix

The complete datasheets are on the CD-ROM in the directory "Datasheets".

CHARACTER MODULE FONT TABLE (Standard font)

Character modules with built in controllers and Character Generator (CG) ROM & RAM will display 96 ASCII and spe-
cial characters in a dot matrix format. Then first 16 locations are occupied by the character generator RAM. These
locations can be loaded with the user designed symbols and then displayed along with the characters stored in the CG
ROM.

[CHARACTER FONT TABLE |

LowER Yes | 0000 | 0010 1010 (1011{1100 (1101|1110 |1111
0000 |CGRAM e | |
0001 @ R
0010 @ | Pl o
0011 @ 4R TE a ee
0100 ® T |- 2

£ 5| & wefee
0101 ® id| =
0110 @ k-
0111 ® MG S
1000 @ | |
1001 @
10100 | © =m0 | 7
011 | @
1100 ® R IR R R O -
1101 ®)
0 | @
1111 ® I =
Page 47

3.3 Mega32 Module

Module Memory

The C-Control Pro Module provides 32kB FLASH, 1kB EEPROM and 2kB SRAM. A supplementary

© 2011 Conrad Electronic

20

C-Control Pro Mega Series

EEPROM with an 8kB memory depth is mounted on the application board. The latter can be
addressed by an 12C interface.

Note: Detailed information can be found in the IC manufacturer's PDF files on the C-Control Pro
Software CD-ROM.

ADC-Reference Voltage Generation

The Micro Controller is equipped with an analog-to-digital converter with a 10 Bit resolution. This
means that measured woltages can be represented by integral numbers from 0 through 1023. The
reference wltage for the lower limit is GND lewel, i. e. OV. The reference wltage for the upper limit
can be selected by the user:

e 5V Operating Voltage (VCC)

¢ Internal Reference Voltage of 2.56V

e External Reference Voltage e. g. 4,096V generated by a Reference Voltage IC.

If X is a digital measuring value then the corresponding woltage value u is computed as follows:

u = x * Reference Voltage / 1024

Clock Generation

Clock generation takes place by a 14.7456MHz Quartz Oscillator. All time dependent actions within
the controller are derived from this clock frequency.

Reset

A Reset initiates the return of the Micro Controller system to a defined starting condition. In gerneral
the C-Control Pro Module knows two reset sources:

e Power-On-Reset: is automatically executed after switch on of the operating voltage.
e Hardware-Reset: is executed when the Module’s RESET (Pin 9) is pulled to "low" and released
again by e. g. shortly pressing the connected reset key RESET1 (SW3).

A "Brown-Out-Detection" awids that the Controller can enter undefined conditions in case of
dropping operating wltages.

Digital Ports (PortA, PortB, PortC, PortD)

The C-Control Pro Module provides four digital ports at 8 pins each. To the digital ports it is possible
to connect e. g. pushbuttons with pull-up resistors, digital IC’s, opto couples or driver circuits for
relais. The ports can be addressed either separatly, i.e. pin by pin or byte by byte. Each pin can
either be input or output.

=¥ Never connect two ports directly together which should simultaneously work as outputs!
Digital input pins are high-impedance or wired to internal pull-up resistors and transform an applied

wltage signal into a logical value. For this it is required that the wltage signal is within the limits
defined for TTL and CMOS IC’s high or low levels. During further processing in the program the

© 2011 Conrad Electronic

Hardware 21

logical values on the respective input ports are represented as 0 ("low") or 1 ("high"). Pins will take
on the values 0 or 1, Bytes from 0 to 255. Output ports are able to give out digital wltage signals by
use of an internal driver circuit. Connected circuits can draw (at high lewvel) or feed (at low lewvel) a
specific current from or to the ports.

=P Pay attention to the maximum admissable load current for a single port or for all ports in total.
Exceeding the maximal values may lead to destruction of the C-Control Pro Module. After a reset
each port is initially configured as input port. By certain commands the direction of data transport
can be toggled.

=2 |t is important to closely study the pin assignment of M32 and M128 prior to programming since
important functions of the program design (e. g. the USB interface of the application board) will apply
to specific ports. If these ports are re-programmed or if the matching jumpers on the application
board are no longer set then it may happen that the design platform can no longer transfer any
programs to the C-Control Pro. Timer inputs and outputs, A/D conwerter, 12C as well as serial
interface are also connected to various port pins.

PLM-Ports

There are two timers available for PLM. These are Timer_0 with 8 bits and Timer_1 with 16 bits.
They can be used for D/A conwersion, to control servo motors in pattern making and to output audio
frequencies. A pulse length modulated signal has a period of N so called "Ticks". The duration of one
tick is the time base. If the output value of a PLM port is set to X then the port will hold high lewvel for
Xticks of one period and will then for the balance of the period drop to low lewvel. For programming of
the PLM channels see Timer.

Periodenlinge (N Ticks)

B g
Ausgang 1 g Ausgang 0 5

el

Zeithasis

The PLM channels for Timer_O and Timer_1 hawe independent time base and period length. In
applications for pulse width modulated digital to analog conversion the time base and period length
are set once and then only the output value is varied. According to their electrical properties the PLM
ports are digital ports. Please observe the technical boundary conditions for digital ports (max.
current).

Technical Data Module

Note: Detailed information can be found in the IC manufacturer's PDF files on the C-Control Pro

© 2011 Conrad Electronic

22

C-Control Pro Mega Series

3.3.1

Software CD-ROM.

All woltage specifications apply to direct current (DC).

Environmental Conditions

Range of admissable ambient temperature

0°C ... 70°C

Range of admissable ambient relative humidity

20% ... 60%

Power Supply

Range of admissable supply wltage 4,5V ... 55V
Power regirement of the module without external appr. 20mA
loads
Clock
Clock Frequency (Quartz Oscillator) 14.7456MHz

Mechanics

Overall measurements less pins, appr.

53 mm x 21mm x 8 mm

Weight appr. 90g
Pin pitch 2.54mm
Number of pins (two rows) 40
Distance between rows 15.24mm
Ports

Max. adimissable current from digital ports + 20 mA
Admissable current total on digital ports 200mA
Admissable input wltage on port pins (digital and -0.5V ... 5.5V
A/D)

Internal pull-up resistors (disconnectable) 20 - 50 kOhm

CPU

Mega32 Overview

The Micro Controller ATmega32 originates from the AVR family by ATMEL. It is a low-power Micro
Controller with Advanced RISC Architecture. In the following see a short summary of its hardware

resources:

e 131 Powerful Instructions — Most Single-clock Cycle Execution

© 2011 Conrad Electronic

Hardware 23

e 32 x 8 General Purpose Working Registers
e Upto 16 MIPS Throughput at 16 MHz

¢ Nonvolatile Program and Data Memories
32K Bytes of In-System Self-Programmable Hash
Endurance: 10,000 Write/Erase Cycles
In-System Programming by On-chip Boot Program

* 1024 Bytes EEPROM
e 2K Byte Internal SRAM

e Peripheral Features:
Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
Four PWM Channels
8-channel, 10-bit ADC
8 Single-ended Channels
2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
Byte-oriented Two-wire Serial Interface (12C)
Programmable Serial USART
On-chip Analog Comparator
External and Internal Interrupt Sources
32 Programmable I/O Lines

e 40-pin DIP
e Operating Voltages 4.5 - 5.5V

3.3.2 Pin Assignment

PortA through PortD are for direct pin functions (e. g. Port_WriteBit) counted from O through 31, see
"PortBit".

Pin Assignment for Application Board Mega32

M32 | Port Port | PortBit| Name Layout Remarks
PIN
1 PBO | PortB.0 8 TO Input Timer/CounterQ
2 PB1 | PortB.1 9 T1 Input Timer/Counterl
3 PB2 | PortB.2 10 |INT2/AINO (+)Analog Comparator, external
Interrupt2
4 PB3 | PortB.3 11 OTO/AIN1 ()Analog Comparator, Output
Timer0
5 PB4 | PortB.4 12 SS USB-Communication
6 PB5 | PortB.5 13 MOSI USB-Communication
7 PB6 | PortB.6 14 MISO USB-Communication
8 PB7 | PortB.7 15 SCK USB-Communication
9 RESET
10 VCC
11 GND
12 XTAL2 Oscillator : 14,7456MHz
13 XTAL1L Oscillator : 14,7456MHz
14 PDO | PortD.0 24 RXD EXT-RXD RS232, serial Interface
15 PD1 | PortD.1 25 TXD EXT-TXD RS232, serial Interface

© 2011 Conrad Electronic

C-Control Pro Mega Series

16 PD2 | PortD.2 26 INTO EXT-T1 SW1 (Tasterl); external InterruptO

17 PD3 | PortD.3 27 INT1 EXT-T2 SW2 (Taster?2); external Interruptl

18 PD4 | PortD.4 28 OTi1B EXT-Al Output B Timerl

19 PD5 | PortD.5 29 OT1A EXT-A2 Output A Timerl

20 PD6 | PortD.6 30 ICP LED1 LED; Input Capture Pin for Pulse/
Period Measurement

21 PD7 | PortD.7 31 LED2 LED

22 PCO | PortC.0 16 SCL EXT-SCL 12C-Interface

23 PC1 | PortC.1 17 SDA EXT-SDA 12C-Interface

24 PC2 [PortC.2 18

25 PC3 [PortC.3 19

26 PC4 [PortC.4 20

27 PC5 [PortC.5 21

28 PC6 [PortC.6 22

29 PC7 | PortC.7 23

30 AVCC

31 GND

32 AREF

33 PA7 | PortA.7 7 ADC7 RX BUSY | ADCY Input; USB-Communication

34 PAG6 | PortA.6 5 ADC6 TX REQ ADCS6 Input; USB-Communication

35 PA5 | PortA.5 5 ADC5 KEY_EN ADCS Input; LCD/Keyboard
Interface

36 PA4 | PortA.4 4 ADC4 LCD_EN ADC4 Input; LCD/Keyboard
Interface

37 PA3 | PortA.3 3 ADC3 EXT_SCK ADC3 Input; LCD/Keyboard
Interface

38 PA2 | PortA.2 2 ADC2 EXT_DATA ADC2 Input; LCD/Keyboard
Interface

39 PA1 | PortA.1 1 ADC1 ADC1 Input

40 PAO | PortA.0 0 ADCO ADCO Input

© 2011 Conrad Electronic

25

Hardware

EWAIEH kg UVeIq [20pyas O G-ZEe0unvy 00gUNIIvYD 34
TA_10 P95 | W00 Prd
3 e LY w 0r110-38NVYHZLNHIS
uos ey BQUNN s
101d0D o
3
ANOANOAND
‘_Mm ‘_Mm ‘T
O O ©O
(€00) 2ad 3
. (1N 9ad =
011G-13%005 MM%W . ad
A @ (TAND) ead o
N @ L 5 (zso1)20d (0IN1) zad £
> >4 o o (osougod (axt) 1ad
N 4 I3 = ae S (1aL)sod (@x)0ad 5
= < q 5 (oanrod <
s i n z o Mgmsn_ 0005)
1z 3 0L)2od 5406) L8d
= @ & K A AOSHNGCE = (VaS)Td (OSIW)9ad —E—
4 a ._. (108)00d (ISOW)S8d =
L X 0d [T__cad ano
| DAY € m (Ss)ved 8
QL) w QM 1dSTVIZN1E8 %wmmmﬁlﬂww% [€ €ad N
5V [ANEST T 25d ASTHNOT
vd & 88— Jad 200 (11)18d Tad £
v 7%® L ST v (12av) 1¥d (OUMOX)08d o —a—
v € O | N (90av) ovd
= 3 § — = (oav) svd 135 e
vd ved vd ==Y ™+ ¥
£ 4 (r0av) vvd
vd £6d vd N0SHIZ sva g
v % € e v (£0av) evd = i
6 2 (zoav) zvd 24 ano
vd Tad vd T X T
o T = — (10av) Tvd
Vd O 08d vd ©oav) ovd *]
S vd Nxs_ﬁ@oiaﬂ_
> > © ;
9 %< <<« AGsHde 20A 00A
: 1§ T8 888 ano
IVOT-ZEVOINLYSOI o s X
101 o]
B BN (S8
ansy A
E=R
DAY
14 € Z T

Connection Diagram

3.3.3

The Megal28 Module is shipped on 4 dual row (2x8) square pins. For hardware application the

Megal28 Module
Pin Layout of the Module

© 2011 Conrad Electronic

3.4

26

C-Control Pro Mega Series

corresponding socket strips must be organized in the following pitch format:

1 X3
2
2. 4
X
1
Rastermal; x
2.54 4
12
X
o
& X2

In the graph the socket strip X1-X4 and then the first two pins of the socket strip can be seen. Pin 1
of strip X1 corresponds to terminal X1_1 (see Megal28 Pinzuordnung).

Module Memory

The C-Control Pro 128 Module provides 128kB FLASH, 4kB EEPROM and 4kB SRAM. A
supplementary EEPROM with an 8kB memory depth and an SRAM with a 64kB memory depth is
mounted on the application board. The EEPROM can be addressed by an 12C interface.

Note: Detailed information can be found in the IC manufacturer's PDF files on the C-Control Pro
Software CD-ROM.

ADC Reference Voltage Generation

The Micro Controller is equipped with an analog-to-digital converter with a 10 Bit resolution. This
means that measured wltages can be represented by integral numbers from 0 through 1023. The
reference wltage for the lower limit is GND lewel, i. e. OV. The reference wltage for the upper limit
can be selected by the user:

e 5V Operating Voltage (VCC)

¢ Internal Reference Voltage of 2.56V

e External Reference Voltage e. g. 4.096V generated by a Reference Voltage IC.

If X is a digital measuring value then the corresponding voltage value u is computed as follows:

u = x * Reference Voltage / 1024

© 2011 Conrad Electronic

Hardware 27

Clock Generation

Clock generation takes place by a 14.7456MHz Quartz Oscillator. All time dependent actions within
the controller are derived from this clock frequency.

Reset

A Reset initiates the return of the Micro Controller system to a defined starting condition. In gerneral
the C-Control Pro Module knows two reset sources:

e Power-On-Reset: is automatically executed after the operating wltage is switched on.
e Hardware-Reset: is executed when the Module’'s RESET (X2_3) is pulled to "low" and released
again by e. g. shortly pressing the connected Reset push button RESET1 (SW3).

A "Brown-Out-Detection" awids that the Controller can enter undefined conditions in case of
dropping operating wltages.

Digital Ports (PortA, PortB, PortC, PortD, PortE, PortF, PortG)

The C-Control Pro Module provides 6 digital ports at 8 pins each and one digital port with 5 pins. To
the digital ports it is possible to connect e. g. push buttons with pull-up resistors, digital IC’s, opto
couples or driver circuits for relais. The ports can be addressed either separatly, i.e. pin by pin or
byte by byte. Each pin can either be input or output.

= Note: Never connect two ports directly together which should simultaneously work as outputs!

Digital input pins are high-impedance or wired to internal pull-up resistors and transform an applied
wltage signal into a logical value. For this it is required that the woltage signal is within the limits
defined for TTL and CMOS ICs high or low levels. During further processing in the program the logical
values on the respective input ports are represented as 0 ("low") oder -1 ("high). Pins will take on the
values 0 or 1, Bytes from 0 to 255. Output ports are able to give out digital voltage signals by use of
an internal driver circuit. Connected circuits can draw (at high lewel) or feed (at low level) a specific
current from or to the ports

= Pay attention to the Maximum Admissible Load Current for a single port or for all ports in total.
Exceeding the maximal values may lead to destruction of the C-Control Pro Module. After a reset
each port is initially configured as input port. By certain commands the direction of data transport
can be toggled.

=¥ It is important to closely study the pin assignment of M32 and M128 prior to programming since
important functions of the program design (e. g. the USB interface of the application board) will apply
to specific ports. If these ports are re-programmed or if the matching jumpers on the application
board are no longer set then it may happen that the design platform can no longer transfer any
programs to the C-Control Pro. Timer inputs and outputs, A/D converter, 12C as well as serial
interface are also connected to various port pins.

PLM Ports

There are three timers available for PLM. These are Timer_0 with 8 bits and Timer_1 as well as

© 2011 Conrad Electronic

28

C-Control Pro Mega Series

Timer_3 with 16 bits each. They can be used for D/A conwersion, to control sernvo motors in pattern
making and to output audio frequencies. A pulse length modulated signal has a period of N so called
"Ticks". The duration of one tick is the time base. If the output value of a PLM port is set to X then
the port will hold high level for X ticks of one period and will then for the balance of the period drop to
low level. For programming of the PLM channels see Timer.

The PLM channels for Timer_0, Timer_1 and Timer_3 have independent time base and period length.
In applications for pulse width modulated digital to analog conwversion the time base and period length
are set once and then only the output value is varied. According to their electrical properties the PLM
ports are digital ports. Please obserwe the technical boundary conditions for digital ports (max.
current).

Technical Data Module

Note: Detailed information can be found in the IC manufacturer's PDF files on the C-Control Pro
Software CD-ROM.

All woltage specifications apply to direct current (DC).

Environmental Conditions

Range of admissible ambient temperature 0°C ... 70°C

Range of admissible relative ambient humidity 20% ... 60%

Power Supply

Range of admissible operating wltage 45V ... 5.5V

Power consumption of the module without appr. 20mA
external loads

Clock

Clock Frequency (Quartz Oscillator) 14.7456MHz
Mechanics

Owerall measurements less pins, appr. 40 mm x 40mm x 8 mm
Weight appr. 90g

Pin pitch 2.54mm
Number of pins (two rows) 64

© 2011 Conrad Electronic

Hardware 29

Ports

Max. admissible current from digital ports + 20 mA

Admissible current total on digital ports 200mA

Admissible input wltage on port pins (digital and -0.5V ... 5.5V

A/D)

Internal pull-up resistors (disconnectable) 20 - 50 kOhm
341 CPU

The Micro Controller Atmegal28 originates from the AVR family by ATMEL. It is a low-power Micro
Controller with Advanced RISC Architecture. In the following see a short summary of its hardware
resources:

e 133 Powerful Instructions — Most Single Clock Cycle Execution

e 32 x 8 General Purpose Working Registers + Peripheral Control Registers
e Fully Static Operation

e Upto 16 MIPS Throughput at 16 MHz

e On-chip 2-cycle Multiplier

¢ Nonvolatile Program and Data Memories
128K Bytes of In-System Reprogrammable Fash
Endurance: 10,000 Write/Erase Cycles
Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program

e True Read-While-Write Operation
4K Bytes EEPROM
Endurance: 100,000 Write/Erase Cycles
4K Bytes Internal SRAM
Up to 64K Bytes Optional External Memory Space
Programming Lock for Software Security
SPI Interface for In-System Programming

e JTAG (IEEE std. 1149.1 Compliant) Interface
Boundary-scan Capabilities According to the JTAG Standard
Extensive On-chip Debug Support
Programming of Hash, EEPROM, Fuses and Lock Bits through the JTAG Interface

Peripheral Features

Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes

Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode and
Capture Mode

Real Time Counter with Separate Oscillator

Two 8-bit PWM Channels

6 PWM Channels with Programmable Resolution from 2 to 16 Bits

Output Compare Modulator

8-channel, 10-bit ADC

8 Single-ended Channels

© 2011 Conrad Electronic

30

C-Control Pro Mega Series

3.4.2

7 Differential Channels

2 Differential Channels with Programmable Gain at 1x, 10x, or 200x

Byte-oriented Two-wire Serial Interface

Dual Programmable Serial USARTs

Master/Slave SPI Serial Interface

Programmable Watchdog Timer with On-chip Oscillator
On-chip Analog Comparator

e Special Microcontroller Features
Power-on Reset and Programmable Brown-out Detection
Internal Calibrated RC Oscillator
External and Internal Interrupt Sources

Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby,

and Extended Standby

Software Selectable Clock Frequency

ATmegal03 Compatibility Mode Selected by a Fuse
Global Pull-up Disable

¢ |/O and Packages
53 Programmable I/O Lines
64-lead TQFP and 64-pad MLF

e Operating Voltages

2.7-5.5Vfor ATmegal28L
4.5 -55V for ATmegal28

Pin Assighment

PortA through PortG are for direct pin functions (e. g. Port_WriteBit) counted from O through 52, see

"PortBit".

Pin Assignment for Application Board Megal28

Module|M128| Port | Port|PortBitt Namel [Name2 Internal Remarks
#
1 PEN prog. Enable
X1 16 2 PEO | 4 32 RXDO PDI EXT-RXDO RS232
X1 15 3 PE1| 4 33 TXDO PDO EXT-TXDO RS232
X1 14 4 PE2 | 4 34 AINO XCKO Analog Comparator
X1 13 5 PE3 | 4 35 AIN1 OC3A Analog Comparator
X1 12 6 PE4 | 4 36 INT4 OC3B EXT-T1 Switch 1
X1 11 7 PE5 | 4 37 INT5S 0OC3C TX-REQ SPI_TX REQ
X1 10 8 PE6 | 4 38 INT6 T3 EXT-T2 Switch 2/ Input Timer 3
X1 9 9 PE7 | 4 39 INT7 IC3 EXT-DATA LCD Interface
X1 8 10 [PBO| 1 8 SS SPI
X1 7 11 [PB1] 1 9 SCK SPI
X1 6 12 [PB2] 1 10 MOSI SPI
X1 5 13 [PB3]| 1 11 MISO SPI
X1 4 14 [PB4]| 1 12 0OCo RX-BUSY SPI RX BUSY
X1 3 15 [PB5] 1 13 OC1A EXT-Al DAC1
X1 2 16 [PB6| 1 14 OCi1B EXT-A2 DAC2
X1 1 17 [PB7| 1 15 OCi1C 0C2 EXT-SCK LCD Interface
X2 5 18 [PG3] 6 51 TOSC2 LED1 LED

© 2011 Conrad Electronic

Hardware 31
X2 6 19 [PG4 | 6 52 TOSC1 LED2 LED
X2 3 20 RESET
X4 10| 21 VCC
X4 12| 22 GND
23 XTAL2 Oscillator
24 XTAL1 Oscillator
X2 9 25 | PDO| 3 24 INTO SCL EXT-SCL 12C
X2 10| 26 [PD1]| 3 25 INT1 SDA EXT-SDA 12C
X2 11| 27 [PD2]| 3 26 INT2 RXD1 | EXT-RXD1 RS232
X2 12| 28 [PD3]| 3 27 INT3 TXD1 | EXT-TXD1 RS232
X2 13| 29 | PD4| 3 28 IC1 Al16 IC Timer 1, SRAM bank
select
X2 14| 30 [PD5] 3 29 XCK1 LCD-E LCD Interface
X2 15| 31 [PD6]| 3 30 T1 Input Timer 1
X2 16| 32 | PD7| 3 31 T2 KEY-E LCD_Interface / Input
Timer 2
X2 7 33 | PGO| 6 48 WR WR SRAM
X28| 34 |PG1l| 6 49 RD RD SRAM
X4 8| 35 | PCO| 2 16 A8 ADR SRAM
X4 7 36 | PC1| 2 17 A9 ADR SRAM
X4 6| 37 | PC2| 2 18 A10 ADR SRAM
X4 5| 38 | PC3| 2 19 All ADR SRAM
X4 4] 39 | PC4| 2 20 Al12 ADR SRAM
X4 3] 40 | PC5| 2 21 Al13 ADR SRAM
X4 2 41 | PC6| 2 22 Al4 ADR SRAM
X4 1| 42 | PC7| 2 23 A15 ADR SRAM
X2 4| 43 |PG2| 6 50 ALE Latch
X316 44 [PA7] O 7 AD7 A/D SRAM
X3 15| 45 | PA6] O 6 ADG6 A/D SRAM
X3 14| 46 [PA5] O 5 AD5 A/D SRAM
X3 13| 47 [PA4] O 4 AD4 A/D SRAM
X3 12| 48 [PA3] O 3 AD3 A/D SRAM
X3 11| 49 [PA2] O 2 AD2 A/D SRAM
X3 10| 50 [PA1] O 1 AD1 A/D SRAM
X39 | 51 |PAO| O 0 ADO A/D SRAM
X4 10| 52 VCC
X4 12| 53 GND
X3 8 54 |PF7 | 5 47 ADC7 |TDI-JTAG
X3 7 5 | PF6 | 5 46 ADC6 TDO-
JTAG
X3 6 56 | PF5 | 5 45 ADC5 TMS-
JTAG
X3 5 57 | PF4 | 5 44 ADC4 TCK-
JTAG
X3 4 58 |PF3 | 5 43 ADC3
X3 3 59 |PF2| 5 42 ADC2
X3 2 60 |PF1| 5 41 ADC1
X3 1 61 |PFO| 5 40 ADCO
X4 11| 62 AREF
X4 12 | 63 GND
X4 9 64 AVCC

© 2011 Conrad Electronic

32

C-Control Pro Mega Series

3.4.3

3.5

Connection Diagram

=% The shown connection diagram shows the planned C-Control Pro Module with CAN Bus
interface. This Module has not been built. Inside the C-Control Pro 128 Module is working a Mega
128 processor, and not a AT90CAN128 like shown in this diagram. Therefore there is also no

ATA6660 CAN-Bus Transceiver inside the C-Control Module.

[
EEEEE]
AT90CAN128

|

ATA6660

ao ao

' .

schaffel el ectronic gnbh

Proj ect: MEGA128V2

PCB- Desi gn: MEGA128 MODUL 2/3

Jom, | gpeet 1 of 1

Megal28 CAN Module

Pin Layout of the Module

The Megal28 CAN Module is shipped on 4 dual row (2x8) square pins. For hardware application the

corresponding socket strips must be organized in the following pitch format:

© 2011 Conrad Electronic

Hardware 33

1 X3
2
2. 4
X
1
Rastermal; x
2.54 4
12
ER
o
& X2

In the graph the socket strip X1-X4 and then the first two pins of the socket strip can be seen. Pin 1
of strip X1 corresponds to terminal X1_1 (see Megal28 Pinzuordnung).

=% To enable the simultaneous access of the CAN Bus and the LCD-Display with the C-Control
Megal28 CAN Module, the connections PD5 and PF7 were exchanged! At the C-Control Megal28
CAN pin PD5 is connected with X3_8 and PF7 is connected with X2_14!

Module Memory

The C-Control Pro 128 Module provides 128kB FLASH, 4kB EEPROM and 4kB SRAM. A
supplementary EEPROM with an 8kB memory depth and an SRAM with a 64kB memory depth is
mounted on the application board. The EEPROM can be addressed by an 12C interface.

Note: Detailed information can be found in the IC manufacturer's PDF files on the C-Control Pro
Software CD-ROM.

ADC Reference Voltage Generation

The Micro Controller is equipped with an analog-to-digital converter with a 10 Bit resolution. This
means that measured woltages can be represented by integral numbers from 0 through 1023. The
reference wltage for the lower limit is GND lewel, i. e. OV. The reference wltage for the upper limit
can be selected by the user:

e 5V Operating Voltage (VCC)

¢ Internal Reference Voltage of 2.56V

e External Reference Voltage e. g. 4.096V generated by a Reference Voltage IC.

If X is a digital measuring value then the corresponding voltage value u is computed as follows:

u = x * Reference Voltage / 1024

© 2011 Conrad Electronic

34

C-Control Pro Mega Series

Clock Generation

Clock generation takes place by a 16MHz Quartz Oscillator. All time dependent actions within the
controller are derived from this clock frequency.

Reset

A Reset initiates the return of the Micro Controller system to a defined starting condition. In gerneral
the C-Control Pro Module knows two reset sources:

e Power-On-Reset: is automatically executed after the operating wltage is switched on.
e Hardware-Reset: is executed when the Module’'s RESET (X2_3) is pulled to "low" and released
again by e. g. shortly pressing the connected Reset push button RESET1 (SW3).

A "Brown-Out-Detection" awids that the Controller can enter undefined conditions in case of
dropping operating wltages.

Digital Ports (PortA, PortB, PortC, PortD, PortE, PortF, PortG)

The C-Control Pro Module provides 6 digital ports at 8 pins each and one digital port with 5 pins. To
the digital ports it is possible to connect e. g. push buttons with pull-up resistors, digital IC’s, opto
couples or driver circuits for relais. The ports can be addressed either separatly, i.e. pin by pin or
byte by byte. Each pin can either be input or output.

= Note: Never connect two ports directly together which should simultaneously work as outputs!

Digital input pins are high-impedance or wired to internal pull-up resistors and transform an applied
wltage signal into a logical value. For this it is required that the woltage signal is within the limits
defined for TTL and CMOS ICs high or low levels. During further processing in the program the logical
values on the respective input ports are represented as 0 ("low") oder -1 ("high). Pins will take on the
values 0 or 1, Bytes from 0 to 255. Output ports are able to give out digital voltage signals by use of
an internal driver circuit. Connected circuits can draw (at high lewel) or feed (at low level) a specific
current from or to the ports

= Pay attention to the Maximum Admissible Load Current for a single port or for all ports in total.
Exceeding the maximal values may lead to destruction of the C-Control Pro Module. After a reset
each port is initially configured as input port. By certain commands the direction of data transport
can be toggled.

=¥ It is important to closely study the pin assignment of M32 and M128 prior to programming since
important functions of the program design (e. g. the USB interface of the application board) will apply
to specific ports. If these ports are re-programmed or if the matching jumpers on the application
board are no longer set then it may happen that the design platform can no longer transfer any
programs to the C-Control Pro. Timer inputs and outputs, A/D converter, 12C as well as serial
interface are also connected to various port pins.

PLM Ports

© 2011 Conrad Electronic

Hardware 35

There are three timers available for PLM. These are Timer_0 with 8 bits and Timer_1 as well as
Timer_3 with 16 bits each. They can be used for D/A conwersion, to control sernvo motors in pattern
making and to output audio frequencies. A pulse length modulated signal has a period of N so called
"Ticks". The duration of one tick is the time base. If the output value of a PLM port is set to X then
the port will hold high level for X ticks of one period and will then for the balance of the period drop to
low level. For programming of the PLM channels see Timer.

The PLM channels for Timer_0, Timer_1 and Timer_3 have independent time base and period length.
In applications for pulse width modulated digital to analog conwversion the time base and period length
are set once and then only the output value is varied. According to their electrical properties the PLM
ports are digital ports. Please obserwe the technical boundary conditions for digital ports (max.
current).

Technical Data Module

Note: Detailed information can be found in the IC manufacturer's PDF files on the C-Control Pro
Software CD-ROM.

All woltage specifications apply to direct current (DC).

Environmental Conditions

Range of admissible ambient temperature 0°C ... 70°C
Range of admissible relative ambient humidity 20% ... 60%
Power Supply

Range of admissible operating wltage 45V ... 5.5V

Power consumption of the module without appr. 20mA
external loads

Clock

Clock Frequency (Quartz Oscillator) 14.7456MHz
Mechanics

Owerall measurements less pins, appr. 40 mm x 40mm x 8 mm
Weight appr. 90g

Pin pitch 2.54mm
Number of pins (two rows) 64

© 2011 Conrad Electronic

36 C-Control Pro Mega Series

Ports

Max. admissible current from digital ports + 20 mA

Admissible current total on digital ports 200mA

Admissible input wltage on port pins (digital and -0.5V ... 5.5V

A/D)

Internal pull-up resistors (disconnectable) 20 - 50 kOhm
351 CPU

AT90CAN Overview

The Micro Controller AT90CAN originates from the AVR family by ATMEL. It is a low-power Micro
Controller with Advanced RISC Architecture. In the following see a short summary of its hardware
resources:

¢ Advanced RISC Architecture
133 Powerful Instructions — Most Single Clock Cycle Execution
32 x 8 General Purpose Working Registers + Peripheral Control Registers
Fully Static Operation
Up to 16 MIPS Throughput at 16 MHz
On-chip 2-cycle Multiplier

¢ Non volatile Program and Data Memories
32K/64K/128K Bytes of In-System Reprogrammable Hash (AT90CAN32/64/128)
* Endurance: 10,000 Write/Erase Cycles
Optional Boot Code Section with Independent Lock Bits
 Selectable Boot Size: 1K Bytes, 2K Bytes, 4K Bytes or 8K Bytes
* In-System Programming by On-Chip Boot Program (CAN, UART, ...)
» True Read-While-Write Operation
1K/2K/4K Bytes EEPROM (Endurance: 100,000 Write/Erase Cycles) (AT90CAN32/64/128)
2K/4K/4K Bytes Internal SRAM (AT90CAN32/64/128)
Up to 64K Bytes Optional External Memory Space
Programming Lock for Software Security

¢ JTAG (IEEE std. 1149.1 Compliant) Interface
Boundary-scan Capabilities According to the JTAG Standard
Programming Hash (Hardware ISP), EEPROM, Lock & Fuse Bits
Extensive On-chip Debug Support

« CAN Controller 2.0A & 2.0B - ISO 16845 Certified ()
15 Full Message Objects with Separate Identifier Tags and Masks
Transmit, Receive, Automatic Reply and Frame Buffer Receive Modes
1Mbits/s Maximum Transfer Rate at 8 MHz
Time stamping, TTC & Listening Mode (Spying or Autobaud)

¢ Peripheral Features
Programmable Watchdog Timer with On-chip Oscillator
8-bit Synchronous Timer/Counter-0

© 2011 Conrad Electronic

Hardware 37

» 10-bit Prescaler

 External Event Counter

» Output Compare or 8-bit PWM Output
8-bit Asynchronous Timer/Counter-2

» 10-bit Prescaler

 External Event Counter

» Output Compare or 8-Bit PWM Output

» 32Khz Oscillator for RTC Operation

Dual 16-bit Synchronous Timer/Counters-1 & 3
» 10-bit Prescaler

* Input Capture with Noise Canceler
 External Event Counter

* 3-Output Compare or 16-Bit PWM Output
» Output Compare Modulation

8-channel, 10-bit SAR ADC

* 8 Single-ended Channels

« 7 Differential Channels

» 2 Differential Channels With Programmable Gain at 1x, 10x, or 200x
On-chip Analog Comparator

Byte-oriented Two-wire Serial Interface
Dual Programmable Serial USART
Master/Slave SPI Serial Interface

* Programming Hash (Hardware ISP)

e Special Microcontroller Features
Power-on Reset and Programmable Brown-out Detection
Internal Calibrated RC Oscillator
8 External Interrupt Sources
5 Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down & Standby
Software Selectable Clock Frequency
Global Pull-up Disable

¢ |/O and Packages
53 Programmable I/O Lines
64-lead TQFP and 64-lead QFN
e Operating Voltages: 2.7 - 5.5V

e Operating temperature: Industrial (-40°C to +85°C)

¢ Maximum Frequency: 8 MHz at 2.7V, 16 MHz at 4.5V

3.5.2 Pin Assignment

PortA through PortG are for direct pin functions (e. g. Port_WriteBit) counted from O through 52, see
"PortBit".

=» To enable the simultaneous access of the CAN Bus and the LCD-Display with the C-Control
Megal28 CAN Module, the connections PD5 and PF7 were exchanged! At the C-Control Megal28
CAN pin PD5 is connected with X3 8 and PF7 is connected with X2_14!

© 2011 Conrad Electronic

38

C-Control Pro Mega Series

Pin Assignment for Application Board Megal28 CAN

Module|M128| Port | Port[PortBitft Namel [Name2 Internal Remarks
#
1 PEN prog. Enable
X1 16 2 PEO | 4 32 RXDO PDI EXT-RXDO RS232
X1 15 3 PEL| 4 33 TXDO PDO EXT-TXDO RS232
X1 14 4 PE2 | 4 34 AINO XCKO Analog Comparator
X1 13 5 PE3 | 4 35 AIN1 OC3A Analog Comparator
X1 12 6 PE4 | 4 36 INT4 OC3B EXT-T1 Switch 1
X1 11 7 PE5S | 4 37 INT5 OC3C TX-REQ SPI TX REQ
X1 10 8 PE6 | 4 38 INT6 T3 EXT-T2 Switch 2/ Input Timer 3
X1 9 9 PE7 | 4 39 INT7 IC3 EXT-DATA LCD Interface
X1 8 10 | PBO| 1 8 SS SPI
X1 7 11 [PB1] 1 9 SCK SPI
X1 6 12 [PB2] 1 10 MOSI SPI
X1 5 13 [PB3]| 1 11 MISO SPI
X1 4 14 [PB4] 1 12 OCo RX-BUSY SPI RX BUSY
X1 3 15 | PB5| 1 13 OC1A EXT-Al DAC1
X1 2 16 [PB6] 1 14 OCi1B EXT-A2 DAC2
X1 1 17 [PB7| 1 15 QCl1C 0cC2 EXT-SCK LCD Interface
X2 5 18 |PG3| 6 51 TOSC2 LED1 LED
X2 6 19 |PG4| 6 52 TOSC1 LED2 LED
X2 3 20 RESET
X4 10| 21 VCC
X4 12| 22 GND
23 XTAL2 Oscillator
24 XTAL1 Oscillator
X2 9 25 | PDO| 3 24 INTO SCL EXT-SCL 12C
X2 10| 26 [PD1]| 3 25 INT1 SDA EXT-SDA 12C
X2 11| 27 [PD2]| 3 26 INT2 RXD1 | EXT-RXD1 RS232
X2 12| 28 [PD3]| 3 27 INT3 TXD1 | EXT-TXD1 RS232
X2 13| 29 | PD4| 3 28 IC1 Al16 IC Timer 1, SRAM bank
select
X3 8| 30 | PD5| 3 29 XCK1 LCD-E LCD Interface
X2 15| 31 | PD6| 3 30 T1 Input Timer 1
X2 16| 32 | PD7| 3 31 T2 KEY-E LCD_Interface / Input
Timer 2
X2 7 33 | PGO| 6 48 WR WR SRAM
X28| 34 |PGl| 6 49 RD RD SRAM
X4 8| 35 | PCO| 2 16 A8 ADR SRAM
X4 7 36 | PC1| 2 17 A9 ADR SRAM
X4 6| 37 | PC2| 2 18 A10 ADR SRAM
X4 5| 38 | PC3| 2 19 All ADR SRAM
X4 4] 39 |PC4| 2 20 Al12 ADR SRAM
X4 3| 40 | PC5| 2 21 Al13 ADR SRAM
X4 2 41 | PC6| 2 22 Al4 ADR SRAM
X4 1| 42 | PC7| 2 23 A15 ADR SRAM
X2 4| 43 |PG2]| 6 50 ALE Latch
X316 44 [PA7] O 7 AD7 A/D SRAM
X3 15| 45 |PA6] O 6 AD6 A/D SRAM
X3 14| 46 [PA5] O 5 AD5 A/D SRAM

© 2011 Conrad Electronic

Hardware 39

X3 13| 47 |[PA4] O 4 AD4 A/D SRAM
X3 12| 48 | PA3| O 3 AD3 A/D SRAM
X3 11| 49 |[PA2] O 2 AD2 A/D SRAM
X310| 50 |PA1] O 1 AD1 A/D SRAM
X39 | 51 [PAO| O 0 ADO A/D SRAM
X4 10| 52 VCC

X4 12 | 53 GND

x2 14| 54 |PF7| 5 | 47 | ADC7 [TDITAG @

X3 7| 5 [PF6| 5 46 ADC6 TDO-

JTAG

X3 6| 5 [PF5| 5 45 ADC5 TMS-
JTAG

X35 | 57 [PF4| 5 44 ADC4 TCK-
JTAG

X34 | 58 [PF3| 5 43 ADC3

X33 | 59 [PF2| 5 42 ADC?2

X32 | 60 [PF1| 5 41 ADC1

X31| 61 [PFO| 5 40 ADCO

X4 11| 62 AREF

X4 12| 63 GND

X4 9 | 64 AVCC

3.5.3 Connection Diagram

= The one pictured diagram shows the new C-Control Pro Megal28 CAN module with CAN bus.

3.6 Mega32 Application Board

uSB

The application board provides a USB interface for the program’s loading and debugging. Because of
the high data rate of this interface data transmission times are considerably shorter compared to the
serial interface. Communication takes place through a USB Controller by FTDI and an AVR Mega8
Controller. The Mega8 provides its own Reset push button (SW5). During USB operation the status
of the interface is indicated by two light emitting diodes (LD4 red, LD5 green). When only the green
LED lights up the USB interface is ready for operation. During data transmission both LED’s will light
up. This also applies to the Debug mode. Flashing of the red LED indicates an error condition. Is a
program started in the Interpreter, the red LED is turned on during the runtime. For USB
communication the SPI interface of Mega32 is used (PortB.4 through PortB.7, PortA.6, PortA.7),
which must be connected by their respective jumpers.

Note: Detailed information on the Mega32 can be found in the IC manufacturer's PDF files on the C-
Control Pro Software CD-ROM.

© 2011 Conrad Electronic

40

C-Control Pro Mega Series

On-Off Switch

The switch SW4 is located on the front of the application board and seres the power-up (On) or
power-down (Off) of the wltage supply.

Light Emitting Diodes (LED)

There are 5 light emitting diodes (LEDs). The LD3 (green) is located on the front below the DC
terminals and lights up when supply woltage is applied. LD4 and LD5 indicate the status of the USB
interface (see Section USB). The green LEDs LD1 and LD2 are located next to the four push
buttons and are freely available to the user. They are connected to VCC through a dropping resistor.
By means of jumpers LD1 can be connected to PortD.6 and LD2 to PortD.7. The LEDs will light up
when the corresponding pin port is low (GND).

Push Buttons

There are four push buttons provided for. SW3 (RESETL) will initiate a reset with Mega32 while SW3
(RESET2) will do the same with Mega8. The push buttons SW1 and SW2 are freely available to the
user. Through jumpers SW1 can be connected to PortD.2 and accordingly SW2 to PortD.3. There is
the possibility to connect switches SW1/2 to either GND or VCC. The possibilities to choose from
are determined by JP1 and JP2 resp. In order to have a defined level at the input port while the push
button is open the corresponding pull-up should be switched on (see Section Digitalports).

=¥ Pressing SW1 during power-up of the board will activate the Serial Bootloader Mode.

LCD

An LCD module can be plugged onto the application board. It displays 2 lines at 8 characters each.
In general also differently organized displays can be operated through this interface. Each character
consists of a monochrome matrix of 5x7 pixels. A flashing cursor below any one of the characters
will indicate the current output position. The operating system provides a simple software interface
for output on the display. This display is connected to connector X14 (16 poles, double row). By
means of a mechanical protection a faulty connection and thus the confusing of poles is awided.

The LCD module used is of type Hantronix HDM08216L-3. Further information can be found on the
Hantronix Webseite http://www.hantronix.com and in the data sheet list on the CD-ROM.

The display is operated in the 4-Bit data mode. Data bits are set to the EXT-Data output, and then
clocked into the 74HC164 shift register with triggering EXT-SCK. When LCD-E is set, the 4 Bits are
applied to the display.

LCD Contrast (LCD ADJ)

Direct frontal view will allow best readability of the LCD characters. If necessary the contrast must be
trivially re-adjusted. The contrast can be adjusted by means of potentiometer PT1.

© 2011 Conrad Electronic

http://www.hantronix.com

Hardware 41

Keyboard

For user inputs a 12 character keyboard (0..9,*,#) is provided (X15: 13 pole connector). The keyboard
is organized 1 out of 12, i. e. there is one line assigned to each key. The keyboard information is
read-in serially through a shift register. If no keyboard is used the 12 inputs can be used as
additional digital inputs. The keyboard uses a 13 pole terminal (single row) and is plugged to X15 in
such a way that the keys will point towards the application board.

With activating the PL (parallel load - KEY-E) input of the 74HC165 all 12 keyboard wires are
transferred in the 74HC165 shift register. After that all information bits are latched to Q7 with
triggering of CP (clock input - EXT-SCK). There they can be read with the EXT-Data Port. Since one
74HC165 holds only 8 Bit information, Q7 of the 1st 74HC165 is connected with DS of the 2nd
74HC165.

I2C Interface
Through this interface serial data can be transmitted at high speed. To do this only two signal lines

are necessary. Data transmission takes place according to the 12C protocol. To effectively use this
interface special functions are provided (see Software Description 12C).

12C SCL 12C Bus Clock Line PortC.0
12C SDA 12C Bus Data Line PortC.1

Power Supply (POWER, 5 Volts, GND)

Power is provided to the application board by means of a 9V/ 250mA Mains Plug-in Power Supply.
Depending on additionally used components it may later become necessary to use a power supply
with higher power rating. A fixed wltage control generates an internally stabilized 5V supply voltage.
This woltage is provided to all circuit components on the application board. Due to the power resene
of the Plug-In Power Supply this wltage can also be used to power external ICs.

=¥ Please observe the Maximum_Drawable Current. Exceeding this current may lead to immediate
destruction! Because of the relativelly high current consumption of the application board in the
vicinity of 125mA it is not recommended for use in devices consistently battery operated. Please see
the note on short time breakdowns of the power supply (see Reset Characteristics).

= If you turn the application board to a position where the interface connectors (USB and serial)
show to the upper side, the leftmost column on the breadboard is GND and the rightmost column is
VCC.

Serial Interfaces

The Micro Controller Atmega32 contains in its hardware an asynchronous serial interface according
to RS232 standards. The format (Data Bits, Parity Bit, Stop Bit) can be determined during
initialization of the interface. The application board contains a high value level conwersion IC to
transform the digital bit streams to Non Return Zero Signals in accordance with the RS232
standards (positive wltage for low bits, negative wltage for high bits). The level conwersion IC makes
use of an improved protection against woltage transients. Voltage transients can in electro-
magnetically loaded surroundings (e. g. in industrial applications) be induced in the interface cables
and thus destroy connected electrical circuits. By means of jumpers the data lines RxD and TxD
can be connected to the Controller PortD.0 and PortD.1. During quiescent condition (no active data

© 2011 Conrad Electronic

42

C-Control Pro Mega Series

transmission) a negative wltage of several wlts can be measured on Pin TxD against GND. RxD is
of high impedance. The 9 pole SUB-D socket of the application board carries RxD on Pin 3 and TxD
on Pin 2. Pin 5 is the GND connection. No handshake signals are being used for serial data
transmission.

vee
A ¢
-
H y—|GND -_,?E‘Hﬂ__
1 joanps GND =10)
— 1C1 =03 X—i°
100NF/S0 I0ONF/ S0V 3
2| e & v |6 RXD] P
L e c2- 14 IXD =1
'i‘ 0
- x—to)
S B
3 _ I0ONF S0V SUB.D9-AGFEMALE
1 2
EXTIXD 11| oy riotr L4 XD
='W Y 12 B
EXERXD 12| pentr aipy 132 RXD
¥ T20UT |
%+ R20UT rom ¢

MaAx20

—21 oND

2
=)

The cable with connection to the NRZ Pins TxD, RxD and RTS may hawe a length of up to 10
meters. It is recommended to use shielded standard cables. When using longer lines or non-
shielded cables interferences may detract correct data transmission. Only use cables of which the
pin assignments are known.

= Never connect the serial transmission outputs of two devices directly together! Transmission
outputs can usually be identified by their negative output woltage in quiescent condition.

Testing Interfaces

The 4 pole pin strip X16 is to be used for testing purposes only and will not necessarily be armed
with components of any kind on ewery application board. For the user this pin strip is of no
importance.

One further testing interface is the 6 pole pin strip (two rows at 3 pins each) at JP4. This pin strip too
is only meant for internal use and may likely no longer be fitted with components in future board
series.

Technical Data Application Board
Note: Detailed information's can be found in the IC manufacturer's PDF files on the C-Control Pro

Software CD-ROM.
All woltage specifications are referring to direct current (DC).

Mechanics |

© 2011 Conrad Electronic

Hardware 43

3.6.1

Owerall measurements, appr. 160 mm x100 mm

Pin pitch wiring field 2.54 mm

Environmental Conditions

Range of admissible ambient temperature 0°C ... 70°C

Range of admissible relative ambient humidity 20% ... 60%

Power Supply

Range of admissibly operating wltage 8V ... 24V
Power consumption without external loads appr. 125mA
Max. admissibly permanent current from a 200mA

stabilized 5V power supply

Jumper Application Board

Jumper

By use of jumpers certain options can be selected. This applies to several ports which are provided
with special functions (see Pin Assignment Table for M32). E. g. the serial interface is relized
through Pins PortD.0 and PortD.1. If the serial interface is not being used then the corresponding
jumpers can be removed and these pins will then be available for other functions. Besides the port
jumpers there are additional jumpers which are described in the following.

Ports Athrough D

The ports available with the Mega32 Module are inscribed in this graph. Here the right side is
connected to the module while the left side connects to the components of the application board. If
any jumper is pulled then the connection to the application board is suspended. This may lead to
obstructions of USB, RS232, etc. on the board.

JP1 and JP2

These jumpers are assigned to push buttons SW1 and SW2. There is the possibility to operate the
push button against both GND or VCC. In the basic setting the push buttons are switching to GND.

© 2011 Conrad Electronic

a4

C-Control Pro Mega Series

HRLEREREREEL

g S

= ERs
AN RN RN R RN RN NN EN N

]

@

o]

]

y e JP1 JF2
o o il . e
e - -

Y _. :HI‘II [n B

e [©][e] =

e

DDDDGDGD @le)

w0 ..‘. [¥ 1 ‘..
@@ Port AD b®
CEOITTTY LT

rT1liiz21

Port D.7 B8
boowwewdd

Jumperpositions at delivery

JP4

JP4 senes to toggle the operating wltage (Mains Plug-In Power Supply
board should be operated using Plug-In Power Supply and woltage control

or USB). The application
(Shipping Condition). The

maximum current to be drawn from the USB interface is lower than from the Plug-In Power Supply.
Exceeding this current can lead to damage on the USB interface of the computer.

JP6

When using the displays the LED back lighting can be switched off by use of JP6.

PAD3

PAD3 (to the right of the module, below the blue inscription) is required as ADC_VREF_EXT for

functions ADC _Set and ADC_Setlnt.

© 2011 Conrad Electronic

45

Hardware

Connection Diagram

3.6.2

T DSPEATORIIVD 5
ST b wS] WD 5EQ
v = voamnLy &
uosvay sy | e
proguomalfidy
o
8 8 ——
5 5 T
7v-
s 5| —&-
. . v ¥ [—25
QBVHONTIE DD BESIRHINS B L
Wy —w o & T T oae
Y — 3B ® = L
ey — @ & [— &
6y — & 5 — &
8y | — & & [& —
2y s s — @ 8
v — & T [— ® =l
sy — &5 & [— @ 9
o — & & [— s
Y — % Y@ v
W — Wy — @ 2 e
v ® z z .
oy — o & — 1t 1A
6 [— & £ [— 60 =
8V [— &€ & [6
v — € § — 00
oY [— & E [@ =
SY — € & — 8 v =
Y — & & (— m L £ —
Y — & g (— m 9 z _.
av — e (— @] T o
Wz ' [— 1 v| e
o — @ 6 — o €
ov [& o — 6 z
o[o g —® =H
wlhnaln L=
Wl amn—o
SY 00 61— %
W8 L1 =
& (9 §1—8 8 9
v PSIERE]
Wi £ L o) P
Wiz T 9 A
v X o H L o]
' Kmeavel
¢ Lvvana
¢ T
ovd ||
&3
ae
@exvn ﬁ
] e 2 s S
%1 1oz Nz
@ | N 1OW I GxeDa
T NI T aana
o ® oI5
TWNEHOW6A-ES L GEHNDOE
AL : :
o
, X g @ |3
’ <
T o st g Mk
ACSHNOOT BN
£ Bl
o——X 5
nosaoor (5
13 i f T
anor
P

Il
o]
201

SE-TI0H-WSE-TI0H-W GE-TIOH-WSETIOHW

ae aw
08 [——
o W Gin ACSHNOTT AGBHNOOT
50N [%
SS[] S
ASNEXY L —eramar
08X L —5ar50 (4 CY & ™
WSNIS 20A 200
®NoSN
A] -
e
HOS1A [—m o
wvaba Cvana ae ae ae ae e ae e
BRNEa
fxsian
AGEHNDOT AGEHNDOT wont | oo
1seHN, ASHNO,
pie 51 1 o X/ ey
d 2007, L007NT
9 LONVARNS \/4
Aw NIA
E=9)
0r10-13%008
I3 @
z a
3 a
13 a
3 a
% a
z P -
@ & 3
& aty ¢
e aw LdS0T YIZWTE i 3 a X
: DV gro—E] % B
P0SENT | rognor E= Z =T
MW= 0o 7 [i
€ 9
S 5
o1 By * B
& €
& z
= £qyd 0 L i o
Tavd @ i
By

20A 00 O0A

TIX

© 2011 Conrad Electronic

C-Control Pro Mega Series

i Agure | 5
€ 10 P | 5ea
e 2 YOINLY w
uospey quTN o3
o 5o ane ano ano
pie0g Lo 0l Ky
el o T oA ‘_‘
soroHn. |
LA 5
= E g B X
ao ao ae ae g
iy 14 D
Al & A G | Mm
AGGHNOOT | AGSHNOOT | AOSHNOOT | AGSHNOOT
160! [&0 &0: f Lt ra 30 g
MO FORE] mm__ o —
0A3 =1 ERE]
LAy Al 1a
20N 201 200 A ane TN o1 R LR
Q
LA 0 sa o
ol EYEY]]
£ =
iy
= D 20A
iy
e ane wd LOAD ano ane
£ 3 iy ‘_‘
w J ol & A S9TOHIL_|®
o — - 3 B
5 ol VOAD 5
8 ezl a "o
9 ano «
5 & S 5 R,
3 3 Ep
¥ T0A3 L : €0
Hwire A I UE WAT a W
¢ A / 5 10
o] 7
SIX s
200 S
A_w 0l
20N
)
ano
YITOHIL ‘_H_
-0-MISS 2 ||u T 21
N4 0 &
a g _ Ha
T €T va-ad1 Ty g un -
am - il
& o7) _ e
g . ST0T B 5 TS
w M = _ MM MMM ¢ YLva-1x3
2 T 90-a01 0o T viva-1xa
[o 2
X MSOPIOT S0 ,_v
Tid \
ae 200 Mo o =0
1G0T

46

© 2011 Conrad Electronic

M RBUXd Ag umeiq | ElEl
EE_ 10 BAgS | 2RrQ
o 0L5avd 0L5-Qvd 070L0-QYd
e Z YOINLY
uosyed P - Mlnzw Mlazw @l_n_zw
Teavd STavd 6avd
m preog Lo edlddy 0/5-0vd 0/-5-0vd 0v0L0-Qvd
© oML @lvog @lvo% @Iv8>
= s> 5 02avd Iavd 80vd
o 0,5avd 0L5-avd 0n0L0-Qvd ano
M CBMWO—m— r .
3 GIN 3 ano
RO 2% IND
T Ceon> SOW 61avd €10vd 10vd i ﬂl X
—= 0,5-avd 0,5-Qvd 070L0-Qvd
= Ej @ m @ WOEB ESNaXL m
| MOS MOS MOS asn-axy
\E ASNg-Xy 81avd 21avd 9avd S M% O_M m
Tl 0/s-avd 0.5-avd 07020-0¥d VW S
O3 XL A_M 91X
m RE=T] m RE=T @W BE=T g SR &9 207
8y b L10vd TI0vd Savd / Eell
/ s 8 0L5avd 025-avd 07020-0¥d 200
anNoano m 1SON m S @ 1SON ano
9Tavd oTavd avd
20N 20A
@ ovg-1gvoaNLY AOSHNOOT
aNo ano ano ano 2302
2 (INIY) LGd
I i]
s,mumﬂ o 9 Neswzld o 3 M
©LpiX) vad 4 9 9 3 eehl
i ot L
| pay O —E— WS
= 0av (@x)00d e YIVOE o
(10560QV)S0d R e
. (vaSK0aV) v0d(08) 58 5 e o= L2531
S Xy | =5y € 0H
(€0av)edd (OSIW)vad 3T A NJTHEE
= (200v)20800/1S0N)ESd SON
7 (10v)10d (55/8100) z8d 'S 1no1x _|_n_zo
- (0oav)ood zﬁuo“ﬂmn_ = A=A
. 01)08d @
1 @ o] = N:_s@_H_
avol—— ey O 555y a N9THdEE
I NJTHdEE q_ 81| o AT _|_n_zo
18dieX e A6 gq
CEALS 1] 5 o =
Wﬁ o [0} a o == 7 FEEEL] ano
ZHNZ6S0'TT d 62.19-8-85N-
D _ a @ o8 e —s
< < N9THdEE a
a9 Il | a & =l g
¥ O 0 0 98X vy jano dagsn 7 — €
1l < > wassn y— 3
o [~ QI 720 8 s s 3 8 ERIER] T
\ 0O o o0 0 Il o|=|_n_zo . X
—a 3 |0 g 71 ATENE €0 20A BN
oo >suz_uNow anol >8mz§=
| @
AOSHNOOT AOSHNOOT | 304
3 Gall] i ER) vﬂu_ o
A
00A0A A0SHNoOT | |
ano} ol
| Aosnoor | |
ano} cali
/ VvV
O0A 00N OJ0A DJOA

© 2011 Conrad Electronic

C-Control Pro Mega Series

48

Component Parts Plan

3.6.3

@) S om

0000000000000000000000000(0) . 0—0 0—0 —

[} .M 220

[e[e[e] [e[0[0] o EEo
Zdr 1dr

00000000000000000000000000 il
0000000000000000000000000]0) o
0000000000000000000000000]0)
00000000000000000000000000)

O

000000000000000000000001000)

00000000000000000000000000
000000000000000000000000 =

0...0..0......00..0...00”
0000000000000000000000000

Z09d 109d

0000000000000000000000000)
0000000000000000000000000)
0000000000000000000000000)
0000000000000000000000000) i
00000000000000000000000000 11O
00000000000000000000000000 '1°
000000000000000000000000" © IO

000000000000000000000000(00 “1°
00000000000000000000000000 O°°

00000000000000000000000000 o
00000000000000000000000000
0000000000000000000000000)°
0000000000000000000000000
0000000000000000000000000
0000000000000000000000000

000000000000000000000000°

000000000000000000000000(00 mv

00000000000000000000000000) &
0000000000000000000000000)0)
00000000000000000000000000) i

%

00000000000000000000000000)

%

00000000000000000000000000)

| | o
(A] g1 QLR
|

00000000000000000000000 EEEEEEEEEEREES
efalulalatalalshelatals

0000000000000000000000 SEEEEEEEEEEER
D00 WD DD DD DD D
aaaaaaaaaaaa

ssssssssssss

W @;ooooooooooooooooooooooomxooooooooooooo

000000000000000000000 000 rgyum _@_ _@_ _o@o_ _omeo_ @

00 00 .u. — o Om
s|@| m@—| o .v,
r— X
By am
) ©

<
T
a

o
i
29

]

o1

[}
22

O

gl W) |
| W [ual =

0000
L X X X]

sa1

H N
[}
]
[|
o

~
8
o
|
=l
501 €71
e
[N J
~
=

@
]

o-}ee e
£
o{-[ree o mu(:

[R
pEEEBE
g HENE
._lml_.::.
=

i+
00000000
00000000,

© 2011 Conrad Electronic

Hardware 49

3.7

Megal28 Application Board

uSB

The application board provides a USB interface for the program’s loading and debugging. Because
of the high data rate of this interface data transmission times are considerably shorter compared
to the serial interface. Communication takes place through a USB Controller by FTDI and an AVR
Mega8 Controller. The Mega8 provides its own Reset push button (SW5). During USB operation
the status of the interface is indicated by two light emitting diodes (LD4 red, LD5 green). When
only the green LED lights up the USB interface is ready for operation. During data transmission
both LEDs will light up. This also applies to the Debug mode. Flashing of the red LED indicates an
error condition. Is a program started in the Interpreter, the red LED is turned on during the runtime.
For USB communication the SPI interface of Megal28 is used (PortB.0 through PortB.4,
PortE.5), which must be connected by their respective jumpers.

Note: Detailed information on the Mega8 can be found in the IC manufacturer's PDF files on the C-
Control Pro Software CD-ROM.

On-Off Switch

The switch SW4 is located on the front of the application board and serves the power-up (On) or
power-down (Off) of the woltage supply.

Light Emitting Diodes (LED)

There are 5 light emitting diodes (LEDs). The LD3 (green) is located on the front below the DC
terminals and lights up when supply wltage is applied. LD4 and LD5 indicate the status of the USB
interface (see Section USB). The green LEDs LD1 and LD2 are located next to the four push
buttons and are freely available to the user. They are connected to VCC through a dropping resistor.
By means of jumpers LD1 can be connected to PortG.3 and LD2 to PortG.4. The LEDs will light up
when the corresponding pin port is low (GND).

Push Buttons

There are four push buttons provided for. SW3 (RESETL1) will initiate a reset with Megal28 while
SW5 (RESET2) will do the same with Mega8. The push button SW1 and SW2 are freely available to
the user. Through jumpers SW1 can be connected to PortE.4 and accordingly SW2 to PortE.6.
There is the possibility to connect switches SW1/2 to either GND or VCC. The possibilities to
choose from are determined by JP1 and JP2 resp. In order to have a defined level at the input port
while the push button is open the corresponding pull-up should be switched on (see Section

Digitalports).

=¥ Pressing SW1 during power-up of the board will activate the Serial Bootloader Mode.
LCD

An LCD module can be plugged onto the application board. It displays 2 lines at 8 characters each.

© 2011 Conrad Electronic

50

C-Control Pro Mega Series

In general also differently organized displays can be operated through this interface. Each character
consists of a monochrome matrix of 5x7 pixels. A flashing cursor below any one of the characters
will indicate the current output position. The operating system provides a simple software interface
for output on the display. This display is connected to connector X14 (16 poles, double row). By
means of a mechanical protection a faulty connection and thus the confusing of poles is awided.

The LCD module used is of type Hantronix HDM08216L-3. Further information can be found on the
Hantronix Webseite http://www.hantronix.com and in the data sheet list on the CD-ROM.

The display is operated in the 4-Bit data mode. Data bits are set to the EXT-Data output, and then
clocked into the 74HC164 shift register with triggering EXT-SCK. When LCD-E is set, the 4 Bits are
applied to the display.

LCD Contrast (LCD ADJ)

Direct frontal view will allow best readability of the LCD characters. If necessary the contrast must be
trivially re-adjusted. The contrast can be adjusted by means of potentiometer PT1.

Keyboard

For user inputs a 12 character keyboard (0..9,*,#) is provided (X15: 13 pole connector). The keyboard
is organized 1 out of 12, i. e. there is one line assigned to each key. The keyboard information is
read-in serially through a shift register. If no keyboard is used the 12 inputs can be used as
additional digital inputs. The keyboard uses a 13 pole terminal (single row) and is plugged to X15 in
such a way that the keys will point towards the application board.

With activating the PL (parallel load - KEY-E) input of the 74HC165 all 12 keyboard wires are
transferred in the 74HC165 shift register. After that all information bits are latched to Q7 with
triggering of CP (clock input - EXT-SCK). There they can be read with the EXT-Data Port. Since one
74HC165 holds only 8 Bit information, Q7 of the 1st 74HC165 is connected with DS of the 2nd
74HC165.

SRAM

The application board holds an SRAM chip (K6X1008C2D) made by Samsung. By using this the
available SRAM memory is extended to 64kByte. Mentioned SRAM uses Ports A, C and partly
G for triggering. If the SRAM is not used then it can be de-activated by JP7 and then these
ports become available to the user.

=¥ To deactivate the SRAM the jumper JP7 has to be mowed to the left side (orientation: serial
interface shows to the left), such that the left pins of JP7 are connected.

= Even though the used RAM chip has a capacity of 128kb only 64kb can be used for reason

of the memory model.

© 2011 Conrad Electronic

http://www.hantronix.com

Hardware 51

I12C Interface

Through this interface serial data can be transmitted at high speed. To do this only two signal lines
are necessary. Data transmission takes place according to the 12C protocol. To effectively use this
interface special functions are provided (see Software Description 12C).

12C SCL 12C Bus Clock Line PortD.0
12C SDA 12C Bus Data Line PortD.1

Power Supply (POWER, 5 Volt, GND)

Power is provided to the application board by means of a 9V/ 250mA Mains Plug-in Power Supply.
Depending on additionally used components it may later become necessary to use a power supply
with higher power rating. A fixed wltage control generates an internally stabilized 5V supply voltage.
This woltage is provided to all circuit components on the application board. Due to the power reserve
of the Plug-In Power Supply this wltage can also be used to power external ICs.

= Please obsere the Maximum_Drawable Current. Exceeding this current may lead to immediate
destruction! Because of the relativelly high current consumption of the application board in the
vicinity of 125mA it is not recommended for use in devices consistently battery operated. Please see
the note on short time breakdowns of the power supply (see Reset Characteristics).

= If you turn the application board to a position where the interface connectors (USB and serial)
show to the upper side, the leftmost column on the breadboard is GND and the rightmost column is
VCC.

Serial Interfaces

The Micro Controller Atmegal28 contains in its hardware two asynchronous serial interfaces
according to RS232 standards. The format (Data Bits, Parity Bit, Stop Bit) can be determined during
initialization of the interface. The application board contains a high value level conversion IC for both
interfaces to transform the digital bit streams to Non Return Zero Signals in accordance with the
RS232 standards (positive wltage for low bits, negative wltage for high bits). The level conwersion IC
makes use of an improved protection against woltage transients. Voltage transients can in electro-
magnetically loaded surroundings (e. g. in industrial applications) be induced in the interface cables
and thus destroy connected electrical circuits. By means of jumpers the data lines RxDO (PortE.0),
TxDO (PortE.1) and RxD1 (PortD.2), TxD1 (PortD.3) can through the Controller be connected to the
level converter. During quiescent condition (no active data transmission) a negative wltage of several
wlts can be measured on Pin TxD against GND. RxD is of high impedance. The 9 pole SUB-D
socket of the application board carries RxDO on Pin 3 and TxDO on Pin 2. Pin 5 is the GND
connection. No handshake signals are being used for serial data transmission. The second serial
interface is lead to a 3 pole pin strip. Here RxD1 occupies Pin 2, TxD1 occupies Pin 1 while Pin 3 is
GND.

The cable with connection to the NRZ Pins TxD, RxD and RTS may hawe a length of up to 10
meters. It is recommended to use shielded standard cables. When using longer lines or non-
shielded cables interferences may detract correct data transmission. Only use cables of which the
pin assignments are known.

© 2011 Conrad Electronic

52

C-Control Pro Mega Series

3.7.1

= Newer connect the serial transmission outputs of two devices directly together! Transmission
outputs can usually be identified by their negative output woltage in quiescent condition.

Testing Interfaces

The 4 pole pin strip X16 is to be used for testing purposes only and will not necessarily be armed
with components of any kind on ewery application board. For the user this pin strip is of no
importance.

One further testing interface is the 6 pole pin strip (two rows at 3 pins each) at the lower right next to
JP4. This pin strip too is only meant for internal use and may likely no longer be fitted with
components in future board series.

Technical Data Application Board
Note: Detailed information's can be found in the IC manufacturer's PDF files on the C-Control Pro

Software CD-ROM.
All woltage specifications are referring to direct current (DC).

Mechanics
Ovwerall measurements, appr. 160 mm x100 mm
Pin pitch wiring field 254 mm

Environmental Conditions

Range of admissible ambient temperature 0°C ... 70°C
Range of admissible relative ambient humidity 20% ... 60%

Power Supply

Range of admissibly operating woltage 8V... 24V
Power consumption without external loads appr. 125mA
Max. admissibly permanent current from a 200mA

stabilized 5V power supply

Jumper Application Board

Jumper

By use of jumpers certain options can be selected. This applies to seweral ports which are provided
with special functions (see Pin Assignment Table for M128). E. g. the serial interface is realized
through Pins PortE.O and PortE.1. If the serial interface is not being used then the corresponding
jumpers can be removed and these pins will then be available for other functions. Besides the port

© 2011 Conrad Electronic

Hardware 53

jumpers there are additional jumpers which are described in the following.

T ;]

5 e e 000ooooooooooo
O f| Cooooooo S EEEEEEEEEEEE finonoom pert ao0oooooooon) [O
Wit OO0000000 (@E000000000000 ws uuuO000oo0ooooon]
T Port EOOOOOO0OOOOOOO
_ T3 w YT | e o o o e o
: B il 00000000000000og
w7 0000000000000000

OO0O000000 Pect FOOOOOOOOOOOOO
NO000nnann oooooooo oooood

IIIIIIIIII

i

[m]
[}
[m]

LD3

Ici8

ooag ooood

Port COOOO0OO00O0O0O0O0OO
OooOooOooCcooooooond
Ooooogocooooooood
go00o00ooooogood

LIS
LD4

Port ROOOOCOO0O0OO0OOOO]
OoOooOoocooooooond

Bl
&l
PABEL]

IPS

oog
O
[m]
O
O
oog
oooon
oooood
oooog
oooon
oog
O
[m]
O
O

I

>

ingEsk

ot DOOOOOO0OOOOOO,
oooooooooooooon,
oOooooooooooooon,

OO000000000o0o

i_i'ﬂ JF1 JFZ2

C== O=E

O %@@

Reszt2 Resetl

=
Bl
I
13

OrAD2
mljpm: GHIY
=
=
-

Ly
n

OOO00000000000000000000000000000

|6\ OOOOO0O0O0000000000000000000000000

@ =
L]
£ DI el ﬁ?%

1 OOOOOO0O=4
oo O
og [}
og [}
og O
og [m|
og [m]
og [m]
oag
oo
og
og
og [m}
og [}
og [m]
og O
og 0

OOO0O0000000000000000000000000000

OOOooddogOOoOoO

"
-

EIEIEEEE
oooonoo
oooon
ooooo
ooood
OoOooOod
ooooo

—
=l
mn

Jumperpositionen im Auslieferzustand

Ports Athrough G

The ports available with the Megal28 Module are inscribed in this graph. Here the yellow side is
connected to the module while the light blue side connects to the components of the application
board. If any jumper is pulled then the connection to the application board is suspended. This may
lead to obstructions of USB, RS232, etc. on the board. The gray marking indicates the first Pin (Pin
0) of the Port.

JP1 and JP2

These jumpers are assigned to push buttons SW1 and SW2. There is the possibility to operate the
push button against both GND or VCC. In the basic setting the push buttons are switching to GND.

JP4

JP4 serves to toggle the operating wltage (Mains Plug-In Power Supply or USB). The application
board should be operated using Plug-In Power Supply and woltage control (Shipping Condition). The
maximum current to be drawn from the USB interface is lower than from the Plug-In Power Supply.
Exceeding this current can lead to damage on the USB interface of the computer.

© 2011 Conrad Electronic

54

C-Control Pro Mega Series

JP6

When using the displays the LED back lighting can be switched off by use of JP6.

JP7

If the SRAM on the application board is not needed it can be de-activated by use of JP7. These ports
will then be available to the user.

=» To deactivate the SRAM the jumper has to be mowved to the left side (orientation: serial interface

shows to the left), such that the left pins of JP7 are connected.

J4

To jumper J4 the second serial interface of the Megal28 is connected through a level converter.

Pin 1 (left, gray) TxD
Pin 2 (center) RxD
Pin 3 (right) GND
PAD3

PAD3 (to the right of the module) is required as ADC_VREF_EXT for functions ADC_Set and

ADC_Setint.

© 2011 Conrad Electronic

Hardware 55

3.7.2

Connection Diagram

MOD1 MOD3
il) EXT- SCL
T N vee EXT- SDA
= s EXT- RXDL
T
= : 3 o> EXT- TXDL
12 4 LCD-E
oy = a\D >
™ L KEY- E
s
g
9 X3 - X3B =
i " ; fm2 SK
" : fmia MOS|
° 12 s 3 =]
° 13 N o - M SO
5
1 s s i1 RX- BUSY
: 15 A a 2 EXT- AL
z 16 s L lmi2 EXT- A2
T - 8 [EXT- SCK
™ X3A
MOD2 MoD4 PAD_GND Oi X5 XA
= ol a\D
v TP La it EXT- RXDO
PEO '
- i RESET PAD1 O———¢ s 2 il o TX00
T 3 il
PE2 (s
T : VYo e uam— PE3 il s
= s PE4 5t S EXT-T1
” 1 =] PE5 & fmrt TX- REQ
- = 3 = PE6 z L EXT-T2
* vee PE7 |2 tm! {mi® EXT- DATA
. =i
T a\D w w 4 X2
: 8 T8 T = e
: RO TE o 2o}
g [s I
3 [4 iad 4l
= g Jp "0 —— —
i = e =D S il o
2 Tl 7l
a0 3 8 s i
VIN s
Pl name e VREG schaffel electronic gnbh
: ;géé o——o Project: MEGA128app_V2
s oLy
P OTs
PCB- Desi gn: MEGA Appl . - Board
-
;m—"m¢ Sheet 1 of 4
vee 1C7 LoD D7 vee vee vee f;[l o
L g T g o v
(=2} o
LCD-RS Vee . ~
EXT-SCK : al =~ gl gls 1 514. 2
. < 3 4 LCD- RS
EXT- DATA &H%L@ j : gLCDE
9 10
- LS5 TA u 12 Lo D5
U FS Led D6 13 14 LCD- D7
g 7] 16
g 7
&)
GL[SHI FT]
C2[LOAD)
e 1<t
a
3D
2D X15
2D -
= -
7 _
74HCLE5 .
109 =
SRG8 =
GL[SHI FT] =
C2[LOAD) =
w3 1<t
a
3D
%B schaffel electronic gnbh
Project: MEGA128app_V2
PCB- Desi gn: MEGA Appl . - Board
s
74
74HC165 }m_nm‘ Sheet 2 of 4

© 2011 Conrad Electronic

56

C-Control Pro Mega Series

C24 Q1 pyc C19
33pF S G\D 100nF 100nF
el =t s s
= G\D
os 4 2B } 1 C5
g g
8 {xra2 = Tvgc
29 | reser Avec 18
RESET-
12 ey (5() aer |—20
13 by o
s> ra S e W
i
SO u g G\D
RES_FT xR sal—I 1™ g
o] = o]
DL 30 pop < pop |23
2 D2 TN ples bt |_2e DL
02) 32 | pop o |25
o2 —poe o |26 DB
or 2 D ™ n ™
20 05 - P05 pot
R s O = . > G os| 20 D5
P @ o o7 A
n
6 XN 2 o |18 i 28
Y g
W |15
T —14 =0
oF 12
i sw
L > puwren
schaffel electronic gnbh
Proj ect: negal28app_v2
PCB- Desi gn: MEGA Appl . - Board
JA0m, | speet 3 of 4
1c11
3
£ Tvcc
= voo |32
cs2 o) 16
G\D
a O
: D & 10 12 ol
3 18 u 1
4 1 10 15
s 1
6 18
7 19
8 2
5 2
4HCS73
VoS SRAM CANH]—e
as 128kx8 J1
K6X1008C2D 6
CANL

TiouT

R2IN

J4

XDL Il

IClL T

MAX202 RXDL |—2—mi

i

Ve el
V- G\D

N AaNs

) ® g ®
glst 23t
G\D _|G\D
schaffel electronic gnbh
Proj ect: megal28app_v2
PCB- Desi gn: MEGA Appl . - Board

Sheet 4 of 4

© 2011 Conrad Electronic

Hardware

3.7.3

Component Parts Plan

megall28app_ve bb
o

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
) [O)—

0 oooooooogoggoooonognoogn

[bbooooooobooooooobooooo

Oo0boooooooobooooobooooooooooo
O ooboooooooooboooooooooooo
oobooooooooboooooooboooooooooooooooono
Oobooooooooboooooooboooooooooooooooong
000000000o0oooocoo0boooooooonoooooooong
000000000o0oooocoo0boooooooonoooooooong
oobooooooooboooooooboooooooooooooooono
oobooooooooboooooooboooooooooooooooono
Oobooooooooboooooooboooooooooooooooong
oobooooooooboooooooboooooooooooooooono
ogoo ooogo g og
oo O

oooo

og oooooo oooooooooooo oooo
oooooooooooo goboooooboooooooooooo
Oobooooooooboooooooboooooooooooooooong
00000o0000oooooooo0boooooooooooooooonoo
ooboobooooboooooooobooooooboooooooogogao

Ooooooogooogo
LOf000O00ooooogoo

DX

[
To

240 1S90 |
N]]
X gEX UEX

Qe

f
0

o]

‘XE
| x5

©
o
v

o
5]
o

J1

]
<
o

~
™
v

=
<
o

D
I}
o

a

]
5]
o

=
0
v

)
o
v

o
1]
o

=
@
o

]
m
v

N
—
X

<@ ©
S|]
x|o)

X14

{02}
- paf}
—

(1]
IEERN

{D
‘03 Cal o]0
X0 e
- n o 0 <
5519

GSdr

57

© 2011 Conrad Electronic

58

C-Control Pro Mega Series

3.8

Mega32 Projectboard

The C-Control Projectboard PRO32 provides a economic alternative to the application board
MEGA32 (Conrad-Order no. 198 245). Compared to the C-Control Pro application board, it's range of
functions is significantly limited, and is used mainly for own hardware developments related to the
MEGA32 UNIT. The Projectboard includes the most important components needed to operate the
MEGA32 UNIT. Furthermore, the Projectboard features a power supply (USB / AC adapter), a
interface converter (RS232) and a large prototype area available for own development. By default, the
Projectboard is designed for programming via RS232. Optionally, the RS232-USB converter (Conrad-
Order no. 197 257) can be used for programming the MEGA32 UNIT via USB. In this case the
programming is done via the serial connection of the MEGA32 UNIT (UART), so the program transfer
is not as fast as the USB transfer on the application board MEGA32.

27 _345_SK

000000000000 ROOOROORRRORROS
000000000 ORROOROOOOOORORROS .
o0 L] 20000008
([JI 11221}
o900 0RPOS
200800000
oo0e00ReS
2900000000
200000000
200000000
([II11ZX21 1]

(JI I 1121
o000 00ROS
2000000 GS
sesceeees
200000000
o000 0OO
*88 e (I ITTITI T I T T T T T T T T T)
‘Jh"......‘.............‘.....

e The MEGA32 UNIT is so plugged that the signature of the UNIT is readable, if the programming
and power connectors show out to you.

¢ In the baseline condition with no-USB-RS232 conwerters the jumpers J4/J3 are put like shown in
the figure.

=% When using the RS232-USB converter (not included), the jumper must be reconnected to USB.

e The jumper J2 is used to select the supply wltage. With the jumper set to "network", the clamps
J11 are used for the power supply (stabilized DC power supply or power adapter min. 100mA,
depending on application). If the jumper J2 is replugged to USB, the board can be operated \ia the
USB power supply of the computer.

=¥ Attention! A maximum current of 100mA through USB should not be exceeded!

© 2011 Conrad Electronic

Hardware 59

e The switch S3 and the power supply pin headers JP7/JP5 and the pins for Vcc / GND on the
prototype area are no longer energized when using USB operation. This supply is used only for
test applications, when there is no external power supply available.

e The appropriate COM port (serial port) must be selected in the C-Control Pro IDE software. Also
the programming via USB is made through the serial interface of the C-Control PRO32 UNIT. Prior
to that check, when necessary, the Windows device manager, which COM ports are available, or
which was installed by the RS232-USB conwerter.

e [fthe I12C bus is used, the jumper JP2 and JP1 hawe to be inserted, if you provide no external pull-
up resistors by your own.

UNIT-BUS

SCL @ @ |SDA

RXDO| @ @ TXDO

+5V @ @ |GND

¢ The bus unit is used to connect 12C-bus expansion modules of the CC1-family and can be used for
custom applications. The interface layout can be found in the figure.

¢ The ports of the MEGA32 UNIT are passed out on headers J1, J5, J6 and J7.

¢ Before you can transfer a program in the unit, the key (BOOT / STOP) must be pressed, to switch
the C-Control PRO32 into programming mode.

¢ When the wiltage is supplied, the user program stored in the memory of the C-Control MEGA32 is
started automatically. This program can be stopped with the (BOOT/STOP) button. Then the C-
Control PRO32 is in BOOT mode, which is required for program transmission.

¢ The program start can be triggered via the IDE or on the button (RESET / START).
¢ When using Msg_Write... to output variables, it is advisable to use the software start from the IDE.

Technical data

Operating wiltage: 8 - 16V DC

Current consumption without load and without external USB-RS232 Converter: about 40mA
Max continuous current from the stabilized 5V wltage: 100mA (without cooling)

Prototype area: 2.54 mm

Range of the permissible ambient temperature: 0° Cto 70 ° C

Admissible relative humidity environment .. 20-60% non-condensing

Dimensions: 60 * 100 * 21mm (including MEGA32 UNIT)

© 2011 Conrad Electronic

60

C-Control Pro Mega Series

3.9

Megal28 Projectboard

The "C-Control PRO 128 Projectboard" provides a economic alternative to the "Application-Board
MEGA128" (Conrad-Order no. 198258). Compared to the C-Control Pro application board, it's range
of functions is significantly limited, and is used mainly for own hardware developments related to the
"MEGA128 UNIT" and the "MEGA128CAN UNIT". The Projectboard also offers a connector "J3",
which provides the CAN bus interface of the "MEGA128CAN". On the Projectboard the "MEGA128"
or the "MEGA128CAN" can optionally be used. The Projectboard PRO 128 includes the most
important components needed to operate the "MEGA128 UNIT'. Furthermore, the Projectboard
features a power supply (USB/AC adapter), a interface converter (RS232) and a large prototype area
available for your own dewvelopment. By default, the Project Board is designed for programming via
RS232. Optionally, the RS232-USB conwerter (Conrad-Order no. 197257) can be used for
programming the "MEGA128 UNIT" via USB. In this case the programming is done via the serial
connection of the "MEGA128 UNIT" (UART), so the program transfer is not as fast as the USB
transfer on the "Application-Board MEGA128".

¢ The "MEGA128 UNIT" is so plugged that the signature of the UNIT is readable, if the (RESET/RUN
& BOOT/STOP) button shows to you.

¢ In the baseline condition with no-USB-RS232 converters the jumpers JP4/JP5 are put like shown
in the figure.

=2 When using the RS232-USB converter (not included), the jumper must be reconnected to USB.

¢ The jumper J2 is used to select the supply wltage. With the jumper set to "network”, the clamps

© 2011 Conrad Electronic

Hardware 61

J11 are used for the power supply (stabilized DC power supply or power adapter min. 100mA,
depending on application). If the jumper J2 is replugged to USB, the board can be operated \ia the
USB power supply of the computer.

= Attention! A maximum current of 100mA through USB should not be exceeded!

e The switch S3 and the power supply pin headers J17/J18 and the pins for Vcc / GND on the
prototype area are no longer energized when using USB operation. This supply is used only for
test applications, when there is no external power supply available.

e The appropriate COM port (serial port) must be selected in the C-Control Pro IDE software. Also
the programming via USB is made through the serial interface of the C-Control "MEGA128 UNIT".
Prior to that check, when necessary, the Windows device manager, which COM ports are
available, or which was installed by the RS232-USB conwerter.

e [fthe I12C bus is used, the jumper JP2 and JP1 hawe to be inserted, if you provide no external pull-
up resistors by your own.

UNIT-BUS

SCL @ @ |SDA

RXDO| @ @ TXDO

+5V @ @ |GND

¢ The bus unit is used to connect 12C-bus expansion modules of the CC1-family and can be used for
custom applications. The interface layout can be found in the figure.

¢ The ports of the "MEGA128 UNIT" are passed out on headers J1, J2, J5, J6, J7, J14 and J15.

= For more information on the exact characteristics of the ports, see the documentation/help file
in the C-Control Pro software.

¢ Before you can transfer a program in the unit, the button (BOOT/STOP) must be pressed, to
switch the "MEGA128 UNIT" into programming mode.

¢ When the wiltage is supplied, the user program stored in the memory of the "MEGA128 UNIT" is
started automatically. This program can be stopped with the (BOOT/STOP) button. Then the
"MEGA128 UNIT" is in BOOT mode, which is required for program transmission.

¢ The program start can be triggered via the IDE or on the button (RESET/START).

¢ When using Msg_Write... to output variables, it is advisable to use the software start from the IDE.

© 2011 Conrad Electronic

62

C-Control Pro Mega Series

Technical data

Operating wltage: 8 - 16V DC

Current consumption without load and without external RS232-USB conwerter: 50 mA
Max continuous current from the stabilized 5V wltage: 100 mA (without cooling)
Prototype area: 2.54 mm

Range of the permissible ambient temperature: 0 ° Cto +70° C

Admissible relative humidity environment .. 20 - 60% non-condensing

Dimensions: 160 x 100 x 23 mm (including "MEGA128 UNIT" or "MEGA128CAN UNIT)

© 2011 Conrad Electronic

C-Control Pro Mega Series

IDE

The C-Control Pro User Interface (IDE) consists of the following main elements:

Sidebar for Project Files Here seweral files can be filed to form a project

Editor Window In order to edit files as many editor windows as necessary can be
opened.
Compiler Messages Here error messages and general compiler informations are displayed
C-Control Outputs Distribution of the CompactC program’s debug messages
Variables Window Here monitored variables are displayed
L L]

File Edit Project C-Control Debugger Options Tools Window Help

DB HS AL ERER @D B P A 4450 220096

EﬂFDl ' N Pro Proje g g D G
----- LED 1.cc
// Create a binary counter ™
i
+ b Loop (int dela
Project Files ing i, w:

Port_DataDir (PORT, PORTDIR) ;

for (i=0;i<4:i+t)

+ ®=1; Editor Window

e =

LED_Loop (int delay_val) S E= ¥ifdef MEGA32
;- main { void) w=dicen: 1 1 n i vl 0 &Ly 3
1 | f¥endif
[_] Lo fao £ m!"'\‘] 20

Functions Owverview N
+ Port_Write (PORT, x): S/ print wvalue
e 1L LhaNelauidelar wall s - A1aT 1NANM= - M
&l | Ereakpoints E3

e — Compiler Messages &
Messages | Output |). C-Caontrol Output

kY rol interfac 25 been connected_

Walue

Interpreter started — 4kb RAEM 1, 0x1

Yariahle Watch

&1 = | B

420 Ins |

© 2011 Conrad Electronic

IDE 65

4.1 Projects

Ewvery program for the C-Control Pro Module is configured through a project. The project states which
source files and libraries are being utilized. Also the settings of the Compiler are noted. A project
consists of the project file with the extension ".cprj" and the appropriate source files.

4.1.1 Create Projects

In the menu Project the dialog box Create Project can be opened by use of item New. Here a project
name is issued for the project. Then the project is created in the sidebar.

=¥ |t is not necessary to decide in advance whether a CompactC or a BASIC project will be created.
In a project CompactC or BASIC files can be arranged combined as project files in order to create a
program. The source text files in a project will determine which programming language will be used.
Files with the extension “*.cc* will run in a CompactC context while files with the extension “*.cbas*"
are translated into BASIC.

Create Project

Froject Mame

| |
[X Cancel J

4.1.2 Compile Projects

Meszages | 6I'H,|EI

Running Pazs 1
G:ASRCACP-Contralh C-Control-ProhDemozsE nglish CompactChLEDALED_1SLED T .0c(35,11); Syntax Error - unespected spmbal. '

one Errar - compliation aborted.

|
Compiling Project LED1
C-Contral Pro Compiler [C] 2006 Conrad Electranic

© 2011 Conrad Electronic

66

C-Control Pro Mega Series

4.1.3

In menu Project the current project can be translated by the Compiler by use of Compile (F9). The
Compiler messages are displayed in a separate window section. If errors arise during compilation
then one error will be described per line. The form is:

File Name(Line, Colutm): Error Description

The error positions can be found in the source text by use of commands Next Error (F11) or Previous
Error (Shift-F11). Both commands are found in menu item Project. Alternative the cursor can in the
Editor be placed onto the error position by use of a double mouse click on the Compiler's error
message.

After successful compilation the Byte Code will be filed in the project list as file with the extension
"*.bc".

By a right mouse click in the area of the compiler messages the following actions can be initiated:

o delete — will delete the list of compiler messages
e copy to clipboard — will copy all text messages onto the clipboard

Project Management

A right mouse click on the newly created project in the sidebar will open a pop-up menu with the
following options:

o T

Add Mew File
Rename

P compie F9

E Ciptions

e Newly Add — A new file will be set up and simultaneously an editor window will be opened.

e Add — An existing file will be attached to the project.

¢ Rename — The name of the project will be changed (This is not necessarily the name of the project
file).

e Compile — The compiler for the project is started.

e Options — The project options can be changed.

Adding of Project Files

When clicking Add project file the file Open Dialog will appear. Here the files to be added to the
project can be selected. Any number of files can be selected.

Alternative by use of Drag&Drop files from the Windows Explorer can be transferred into the project
management.

© 2011 Conrad Electronic

IDE 67

Project Files

When files have been added to the project these can be opened by a double mouse click onto the
file name. By use of a right click further options will appear:

Up
Dawn
Rename

E;. Remove

fZf options |

Up — The project file will move up the list (also with Ctrl - Arrow up).
Down — The project file will move down (also with Ctrl - Arrow down).
Rename — The name of the project file will be changed.

Delete — The file will be deleted from the project.

Options — The project options can be changed.

4.1.4 Thread Options

Since ersion 2.12 od the IDE the thread configuration is no longer made in the project options.
Please see the new syntax in Threads.

© 2011 Conrad Electronic

68 C-Control Pro Mega Series

4.1.5 Project Options

Projekt Optionen

Avthar ! |

: [1
Werzion ! |

Comment

O ptiamns

[] Multithreading [Configure Thread]
Generate Debug Code [
Create bapfils

Configure Library]

Select CPU

) C-Control 32 Query Hardware
(®) C-Control 128

e s Er s SRS e e o U

I o 0K] X Cancel

For each project the compiler settings can be changed separately.

The items Author, Version, Commentary can be freely inscribed. They serve as memory support in
order to better remember the project details at a later date.

In "Select CPU" the target platform of the project is determined. A mouse click on "Scan Hardware"
will scan the connected C-Control Pro Module and select the correct CPU.

In "Options™ Multi Threading is configured and it is further determined if a Debug Code should be
generated.

=¥ If a Debug Code is compiled the Byte Code becomes insignificantly longer. For each line in the
source text which contains executable commands the Byte Code will be one Byte longer.

=% In case Multi Threading should be used the selection box in the project options must be
selected. Further the parameters for each separate Thread must be set under "Configure Threads".

© 2011 Conrad Electronic

IDE 69

In the options can also be selected if a Map File should be generated.

4.1.6 Library Management

In the Library Management the source text libraries can be chosen that will be compiled in addition
to the project files.

Projekt Optionen |E|

Athor i |

- []
Wersion | |

Comment

O ptions

[] Multithreading [Configure Thread]
Generate Debug Code [
Create Mapfile

Configure Library]

Select CPU

{3 C-Contral 32 Quemy Hardware
(#) C-Contral 128

e s Bt S B T Er it ot O

I W 0K] X Cancel

Only those files will be used for compilation whose CheckBox has been selected.

The list can be altered by use of the path text input field "Library Name" and the buttons in the
dialog:

Add — The path will be added to the list.

Replace — The selected entry in the list is replaced by the path name.

Delete — The selected list entry is deleted.

Update Library — Files present in the Compiler Presetting but not in this list will be added.

© 2011 Conrad Electronic

70

C-Control Pro Mega Series

4.2

Editor

Several windows can be opened in the C-Control Pro Interface. Each window can be altered in size
and displayed text detail. A double mouse click on the title line will maximize the window.

/4 main program
i

vold main({void

LED Loop (delwalj:

Functions Overview

f/f delay time:

1000ms

/! function call with delay time
&5 parameter

A mouse click in the area to the left of the text will there set a Breakpoint. Prior to this the source
text must be compiled error free with "Debug Info" and in the corresponding line really executable
program text must be placed (i. e. no commentary line o. e.).

On the left side is an oveniew of all syntactically correct defined functions. The function names with
parameters are expressed in this view. The function where the cursor in this moment resides is

drawn with a grey bar in the background. After a double click on the function name the cursor jumps
to the beginning of that function in the editor.

© 2011 Conrad Electronic

IDE 71

¢ LED_Loop {int delay_val)
L main { void)

Code Folding

To maintain a good oveniew ower the source code, the code can be folded. After the syntactical
analyzer, that is built into the editor, recognizes a defined function, beams are drawn on the left side
along the range of the function. A click on the minus sign in the small box folds the text, so that only
the first line of the function can be seen. Another click on the small plus sign, and the code unfolds
again.

/{ Create a binary counter

£

// main program

i

void main(void)

{
delval=1000; ff delay time: 1000ms
while (1)

1

TFD Toonmidelvall - ff Foanetinn call with delaw hirne__M

B

© 2011 Conrad Electronic

72

C-Control Pro Mega Series

42.1

To fold or unfold all functions in an editor file, the options Full Collapse and Full Expand are
selectable in the right click editor pull-up menu.

Syntactical Input Help

The editor now has a syntactical input help. When the beginning of a reserved word or a function
name from the standard library is typed into the editor, the input help can be activated with Ctrl-
Space. In dependency from the already entered characters, a popup select box opens, that shows
the words that can be inserted into the source code.

Pr:nrtl il

Port_DataDir PN} ey
Port_DataDirBit | |
PORT_IM
PORT_OFF
PORT_OM
PORT_CUT
Port_Read
_|Port_ReadBit s

T S —

Ipt

Refresh Editor View

Should the syntactic analyzer fail and cannot recognize the defined function blocks (can seldom
happen in find - replace operations), the syntactic analysis can repeated if the command Refresh is

selected from the Edit pull-down menu.

Editor Functions

Under menu item Edit the most important editor functions can be found:

e Undo (Ctrl-Z) — will execute an Undo operation. The possible number of Undo steps depends on

the settings in Undo Groups.

¢ Restore (Ctrl-Y) — will restore the editor condition that has been changed by previous use of the

Undo command.

e Cut (Ctrl-X) — will cut out selected text and will copy it to the clipboard.

e Copy (Ctrl-C) — will copy selected text to the clipboard.

e Insert (Ctrl-V) — will copy the contents of the clipboard to the cursor position.
e Select All (Ctrl-A) — will select the entire text.

e Search (Ctrl-F) — will open the Search dialog.

e Continue Search (F3) — will continue the search using the set search criteria.
e Replace (Ctrl-R) — will open the Replace dialog.

e Go To (Alt-G) — will allow to jump to a definite line.

Search/Restore Dialog

© 2011 Conrad Electronic

IDE 73

Text ta find: |

Beplace with: |

Lol Ll)

O ptionz Dhirectior
| Case zengitive = Forward
[Whole wordz only
| Regular expreszions (" Backward
[Prompt on replace
o Origire
{* From cursor
Scope
(« [Global

" Enti
" Selected text =R

oK Feplace Al Cancel

Text to find — Input field for the text to be searched for.

Replace with — Text that will replace the text found.

Case Sensitive — makes the distinction between upper and lower case writing.

Whole words only — will find only whole words rather than part character chains.
Regular expressions — activates the input of Regular Expressions in the search mask.
Prompt on replace — prior to replacing the user will be asked for approval.

Furthermore it can be pre-determined whether the entire text or a selected text area only should be
scoured and what search direction should be used.

422 Print Preview

To deliver the source code as Hard Copy or for archiving purposes, the C-Control Pro IDE has built in
printer functions. The following options can be selected from the File Pull-Down Menu:

Print: Prints the indicated pages

Print Preview: Shows a print preview

Printer Setup: Choose the printer, paper size and orientation

Page Setup: Header and Footer lines, line numbers and other parameters can be selected

© 2011 Conrad Electronic

74

C-Control Pro Mega Series

4.2.3

£ Print Preview

[« <[P Ty via-Djis/n

LED1: Binary Counter

B binary counter is shown at LED1/LEDZ.

used Library: IntFunc Lib.cc

Mega32: LED1/2 are accessed from PortD
Megal2g8: LED1/2 are accessed from PortG

LED is 1it wheén Port Pin is low

0-=-PORT &; 1.=-PORTB; '‘2.= PORT E, 3
& = PORT G

MEGA128: 4 = PORT E, 5 = PORT F,

$ifdef MEGA32
#define PCRT 3
#define PORTDIR OxCO
#endif

$ifdef MEGAlZ2S
#define PCRT &
#define PORTDIR Ox18
#endif

int delval:;

= PORTD

// LEDI=PortD.&, LED2=PortD.7

// Bpplication Board 2.Version PortG
// LED1=PortG.3, LED2=PortG.4

// global variable declaration

i
// Create a binary counter
i
void LED Loop(int delay val)
{

i s | o I~ o

Port_DataDir (FORT, PORTDIR) ;
for (i=0;i<4;is++)

3
x=1;

#$ifdef MEGA32
X=i<<6;
#endif

Keyboard Shortcuts

S shifiea deft

© 2011 Conrad Electronic

© 2011 Conrad Electronic

76 C-Control Pro Mega Series

Esc Reset selection
Citrl + digit (0-9) Go to Bookmark digit (0-9)
Shift + Ctrl + (0-9) Set Bookmark digit (0-9)

Ctrl + Space Auto completion popup
4.2.4 Regular Expressions

The search function in the editor supports Regular Expressions. With this function character chains
can highly flexible be searched for and replaced.

n A Circumflex at the beginning of the word finds the word at the beginning of &

line

$ A Dollar Sign represents the end of a line

. A Dot symbolizes an arbitrary character

* A Star stands for the repeated appearance of a pattern. The number of

repetitions may also be Zero.

+ A Plus stands for the multiple or at least solitary appearance of a pattern

[] Characters in square brackets represent the appearance of one of the characters
B A Circumflex in square brackets negates the selection

[-] A Minus in square brackets symbolizes a character range

{} Tailed braces will group separate expressions. Up to ten levels may be nested

\ A Back Slash will take the special meaning from the following character
Examples

Example will find

~oid the word "wid" only at the beginning of a line

$ the Semicolon only at the end of a line

~oid$ Only "woid" may stand in this line

vo.*d e. g. "wod","woid","wgqd"

vo.+d e. g. "wid","vgqqd" but not "vod"

[gs] the letters 'q' or 's'

[gs]port "gport" or "sport"

["gs] all letters other than'q' or 's'

[a-g] all letters from 'a’ through 'g' (including)

{tg}+ e. g. "tg", "tgtg", "tgtgtg" asf.

\$ '$

4.3 C-Control Hardware

Under menu item C-Control all hardware relevant functions can be executed. These include transfer
and start of the program on the hardware as well as password functions.

© 2011 Conrad Electronic

IDE 77

43.1

Start Program

Program Transfer

After a project has been translated free of errors the Bytecode must first be transferred onto Mega32
or Mega 128 before it can be executed. This is done by use of the command Transfer (Shift-F9) in
menu C-Control.

=2 Not only the Bytecode is transferred to the Mega Module. At the same time the latest interpreter
version is sent to the C-Control Module.

Start

By Start (F10) the execution of the Bytecode is brought about on Mega 32 or Megal28. On the
application board this is signaled by turning on the red LED.

Stop

During normal operation a program will be stopped by pressing the RESET1 button. For performance
reasons the program execution on the Module is during normal operation not being stopped by use
of software. This can however be performed with the IDE function Stop Program when the program
runs in Debug Mode.

=¥ In rare cases the system can get jammed during USB operation when the RESET1 button is
pressed. To overcome this please also press RESET2 in order to issue a Reset pulse to the Mega8,
too. The Mega8 is on the Application Board responsible for the USB interface.

Auto Start

If no USB interface is connected and SW1 has not been pressed during power-up in order to reach
the Serial Bootloader Mode the Bytecode (if available) is started in the Interpreter. l.e. if the Module
is built into any hardware application the mere connection of the operating wltage is sufficient to
automatically start the user program.

=% A signal on INT_O during switch-on of the C-Control Pro Module can interfere with the auto start
behaviour. According to the pin assignments of M32 and M128 INT_O is connected to the same pin
as switch SW1. When SW1 is pressed during power-up of the Module this will activate the Serial
Bootloader Mode and the program will not automatically be started.

© 2011 Conrad Electronic

78

C-Control Pro Mega Series

4.3.2

4.3.3

Outputs

For display of Debug messages there is an "Outputs” window section.

Mezzages | Output |

Interpreter sterted - G4kb BRAM
|Hello World!

|Zeit: 10ms

Interpreter stopped

x e B ﬁ; .
e % .ch

Here is shown when the Bytecode Interpreter has been started and terminated and for how long (in
milliseconds) the Interpreter was in operation. The operation time howewer is not very useful if the
Interpreter has been stopped during Debug Mode.

The Outputs window can also be used to display the user's own Debug messages. For this there are
sewveral Debug Functions.

With a right mouse click in the Debug Outputs section the following commands can be selected:

¢ Delete — will delete the list of Debug outputs
e Copy to Clipboard — will copy all text messages onto the clipboard

PIN Functions

Some solitary functions of the Interpreter can be protected by use of an alpha-numeric PIN. If an
Interpreter is protected by a PIN normal operations are prohibited. By means of a new transfer the
Interpreter can be overwritten, the PIN will however stay presened. Also a normal start other than the
Autostart behaviour is no longer allowed. Furthermore the scans of hardware and firmware version
numbers are locked.

If access to a forbidden function is tried a dialod with the following text will be displayed: "C-Control
is Password protected. Operation not allowed!".

Through inscription of the PIN with Enter PIN in the C-Control Menu all operations can again be
released.

In order to enter a new PIN or to delete a set PIN there are the commands Set PIN and Delete PIN in
the C-Control Menu. If there is an old PIN in exitence then the Module must of course first be
unlocked by entering the old PIN. The PIN can have a length of up to 6 alpha-numeric characters.

=¥ In case the password has been lost there is an emergency function which can be used to reset
the Module to its initial state. In C-Control there is the option Reset Module which can be used to
delete PIN, Interpreter and Program.

© 2011 Conrad Electronic

IDE 79

Password Protection

J[Carizel]

434 Version Check

Since the C-Control Pro Mega Series supports various hardware platforms it is important to closely
monitor the current version numbers of Bootloader, Interpreter and Hardware. This is possible by use
of item Hardware Version in the C-Control menu.

Hardware Information

B ootloader Yersion 1.00 |
Interpreter Wersion 1.26 |
Hardware Yersion m

Hardware | C-Contral MEG& 128 |
Caonnection Mode | I1SE Part |
W 0K

4.4 Debugger

In order to activate the Debugger the project must first be compiled in Debug Code free of errors and
then transferred to the Module. The file holding the Debug Code (*.dbg) must be present in the
project list.

In the Debugger menu all Debugger commands can be found. The Debugger ist started with Debug
Mode (Shift-F10). If at this point of time no Breakpoint is set then the Debugger will stop at the first
executable instruction.

© 2011 Conrad Electronic

80

C-Control Pro Mega Series

441

If in Debug Mode, the next Breakpoint will be reached by use of Start (F10). If no Breakpoint is set
then the program will be executed in its normal way. There is the exception howewer that the
program flow can be stopped by use of Stop Program. This only works providing that the program
has been started from the Debug Mode.

If the Debugger has stopped in the program (a blue bar is displayed) then the program can be
executed in single steps. The instructions Single Step (Shift-F8) and Procedure Step (F8)
respectively will execute the program code up to the next code line and will then stop again.
Opposing to Single Step the function Procedure Step will not jump into the function calls but will
owverpass them. If the program has stopped all breakpoints can be changed.

=¥ |f a loop contains only one code line then one single step will execute the entire loop since only
after this branching out to a new code line will take place.

With the instruction Leave Debug Mode the Debug Mode will be terminated.
=¥ During active Debug Mode the program text can not be altered. This is because line numbers

holding set Breakpoints must not be moved out of place. Otherwise the Debugger would not be able
to synchronize with the Bytecode onto the C-Control Module.

Breakpoints

The editor allows to set up to 16 Breakpoints. A Breakpoint is entered by a mouse click to the left of
the beginning of a line (see IDE or Editor Window).

< E-\SRO\CP-Controftrunk\CPro_ Projects\Work Demos\English\Compact\LED\LED_ T\LED.... (= B |
. Port DataDir (PORT, PORTDIR) ;
+ for (i=0ri<4ri+t)
+ x=1;
= $ifdef MEGA3Z
X=i<<E; ff shift i left
$endif R
= #ifdef MEGA12SH
@ || mEi<ed; W shift i ‘right
L #endif
- Port Write (PORT,x); ff print wvalue
* AbsDelay (delay wal); ff delay 1000ms
}
| ()
G it 2 e
(; i | |

= The number of Breakpoints is limited to 16 because this information is carried along in RAM

© 2011 Conrad Electronic

IDE 81

during operation of the Bytecode Interpreter. Other Debuggers on the Market will set Breakpoints
directly into the program code. In our case this is not desirable since it would drastically reduce the
life time of the flash memory (appr. 10,000 writing accesses).

442 Array Window

In order to monitor the contents of Array Variables it is possible to call up a window with the array
contents. To do this the pointer is placed over the the variable and Show Array is selected by a right
mouse click.

[Paste Ctri+v
'@ contextHelp Cirl+F1

| E Insert Variable

On the left side the Array indices are shown while the contents are displayed on the right side. It
should be noted that with multi-dimensional arrays the indices on the right will gain at the faster
pace.

£ Array: stri

[}

'H'. 0448
'e', OxEE
T, Dxbic
T, OB
"o, O=Gf
toOw20
"W, Ox57
"o, OwEf
T, 0ui2
T, OxBc
'd', 0«64
1, 0=21
MUL, 0<00 «

1
2
3
4
]
B
7
a
9

4, Refrezh l[W 0K]

© 2011 Conrad Electronic

82

C-Control Pro Mega Series

443

The contents of an array window may at every stop of the Debugger or at every single step no longer
be actual. If with each single step in the Debugger several array windows are newly brought up-to-
date then delays may occur since the data must always be loaded from the Module. For this reason

there are three operating modes:

v Auto Refresh
Refresh at Breakpoint
manual Refresh

Auto Actualize

Actualize at Single Step and Breakpoint

Actualize at Breakpoint

Actualize only at Breakpoint

Manually Actualize

Only by clicking switch "Actualize”

Variable Watch Window

The contents of variables can be displayed within the Debugger. To do this the mouse pointer is
placed over the variable. Within approximately 2 seconds the content of the variable is displayed in
form of a Tooltip. The variable is first displayed in accordance to its data type and then, separated by
a comma, as Hex number with a preceeding "0x".

If several variables need to be monitored then the variables can be comprised in a list.

||V ariables

Yalue

. LED Loop-x
B o
delval
W
> £

In order to enter a variable into the list of monitored variables there are two possibilities. For one the
cursor can be placed in the text editor at the beginning of a variable and then Insert Variable can be

selected by a right mouse click.

© 2011 Conrad Electronic

IDE 83

(%) Paste Cirl+v
@ ContextHelp Cirl+F1

Full Collapse

ﬁ Insert Variable
',.13 Show Array

The other possibility is by use of the context menu in the variables list which can also be activated
by a right mouse click.

When Insert Variable is selected then the variable to be monitored can as text be entered into the
list. In case of a local variable the function name with a preceeding colon (Function Name :
Variable Name) is entered. With Change Variable the text entry in the list can be altered and with
Delete Variable the variable can be entirely erased from the list. Prior to this the line holding the
variable to be deleted must be selected. The command Delete All Variables will delete all entries
from the list.

g-d Insert Variable

% Remove all Variables

v

Under certain circumstances an error message is shown instead of a value in the list:

no Debug Code No Debug Code has been generated

wrong Syntax During text entry invalid characters have been entered for a4
\variable

Function unknown The Function Name is not known

Variable unknown The Variable Name is not known

not in Debug Mode The Debug Mode has not been activated

no Context Local variables can only be displayed while within this function

not actual The content of the variable has not been updated

If a high number of variables is entered in the monitor list it may during single step operation take
guite some time until all variable contents from the module have been scanned. For this reason the
Option Auto Actualize can be switched off for individual variables. The contents of these variables will
then only be displayed after the command Actualize Variable is executed. This way the Debugger
can quickly be operated in single steps and the contents are only actualized on demand.

© 2011 Conrad Electronic

84

C-Control Pro Mega Series

4.5

= Variables of the Character type are displayed as single ASCIlI characters.

Tools

Terminal Window

In the Tools pulldown menu a simple terminal program can be started.

@'Té'rm'inal = ’E“E

], 4 | [2]

[T sendC® [Preserve Input

ASCII |

b _ [Send J [F‘arameter]

Received characters are directly shown in the terminal window. Characters can be send in two
different ways. On the one hand the user can click into the terminal window and directly type the
characters from the keyboard, on the other hand the text can be entered in to the ASCII input line
and send with the Send button. Instead of ASCII the characters can be defined as integer values in
the Integer input line. Is send C/R selected, a Carriage Return (13) is sent at the end of the line.
Enable Presene Input to prevent that the input lines are cleared after pressing the Send button. The
Parameter button opens the Terminal settings dialog from the IDE settings.

© 2011 Conrad Electronic

IDE

4.6

46.1

Options

85

In Menu Options all IDE settings and Compiler pre-settings can be found.

Editor Settings

Editar options

v EI v Owennrte blocks [Float markers
v Auto indent mode | Show caret in read only mode | Undo after zave
v Backzpace unindents | Copy to clipboard az RTF [Dizable selection
v Group undo v Enable column selection [Diraw curent ine focus
[Group redo v Hide zelection [no focusz] [Hide curzor an type
| Keep caret in text v Hide dynamic [no focus) ¥ Scrall to past line
[Double click line v Enable text dragging [Greedy zelection
| Fixed line height | Collapze empty lines | Keep zelection mode
[Perzsistent blocks [Keep tralling blanks [Smart caret
| “ward break onright margin | “word wrap | Optimal fill
[Fixed column move [“ariable haorizontal zcraoll bar [Unindent keep align

rdo lirit; h_l:":”:l Tab mode; ilnsert Ipaces Ll Block indent: |4

Collapze level: r'l Tab stops: |4

[ALitter Right rargin
Wisible v width: |34 Wisible v Pasition: |50

I 7 {
Colar: i. Fuchsia LJ Colar: |. Furple
Fontg

Background Color = _
Editor font “:‘ T LJ Eoie i ‘ | Line numeration
ok Cancel

B

Owerwrite mode — Inserts text at the cursor overwriting existing text.
Auto indent mode - Positions the cursor under the first non blank character of the preceding non
blank line when you press Enter.

Backspace unindents - Aligns the insertion point to the previous indentation level (outdents it)

when you press Backspace, if the cursor is on the first non blank character of a line.
Group undo - Undo operation will not be performed in small steps but in blocks.
Group redo - If it is set Redo will involve group of changes.

Keep caret in text - Allows move caret only into text like in Memo.

© 2011 Conrad Electronic

86

C-Control Pro Mega Series

4.6.2

Double click line - Highlights the line when you double-click any character in the line. If disabled,
only the selected word is highlighted.

Fixed line height - Prevents line height calculation. Line height will be calculated by means of Default
Style.

Persistent blocks - Keeps marked blocks selected even when the cursor is moved using the arrow
keys, until a new block is selected.

Owerwrite blocks - Replaces a marked block of text with whatever is typed next. If Persistent Blocks
is also selected, text you enter is appended following the currently selected block.

Show caret in read only mode - Shows caret in read only mode.

Copy to clipboard as RTF - Copies selected text also in RTF format.

Enable column selection - Enabled column selection mode.

Hide selection - Hides selection when editor loses focus.

Hide dynamic - Hides dynamic highlighting when editor loses focus.

Enable text dragging - Enables drag & drop operation for text movement.

Collapse empty lines - Collapse empty lines after text range when this rang have been collapsed.
Keep trailing blanks - Keeps any blanks you might have at the end of a line.

Float markers - If it is set markers are linked to text, so they will move with text during editing.
Otherwise they are linked to caret position, and stay unchanged during editing. Also markers save
scroll position.

Undo after sawve - Stay undo buffer unchanged after save with SaveToFile method.

Disable selection - Disables any selection.

Draw current line focus - Draws focus rectangle around current line when editor have focus.

Hide cursor on type - Hides mouse cursor when user type text and mouse cursor within client area.
Scroll to last line - When it is true you may scroll to last line of text, otherwise you can scroll to last
page. When this option is off and total text height less then client height vertical scroll bar will be
hidden.

Greedy selection - If this option is set selection will contain extra column/line during column/line
selection modes.

Keep selection mode - Selection enabled for caret movement commands (like in BRIEF).

Smart caret - Acts on the caret movement (up, down, line start, line end). Caret is mowved to the
nearest position on the screen.

Word wrap - Determines whether the editor wraps text at the right side of text area.

Word break on right margin - Determines whether text wraps (word-wrap mode) on the right margin
instead of right side of client area.

Optimal fill - Begins every auto indented line with the minimum number of characters possible, using
tabs and spaces as necessary.

Fixed column mowve - Keeps X position of caret before editing text, this position is used when moving
up/down caret.

Variable horizontal scroll bar - Sets range of horizontal scroll bar to the maximal width of only visible
lines. Hides horizontal scroll bar if visible lines fit client width.

Unindent keep align - Restricts unindent operation when at least one of lines can not be unindented.

At Block indent the number of blanks is inscribed by which a selected block can be indented or
backed by use of the Tabulator key.
The input field Tab stops determines the width of the tabulator by numbers of characters.

Syntax Highlighting
In this Dialog the user can change the specific Syntax Highlighting for CompactC and BASIC. The

chosen language for the setting is CompactC or BASIC in dependency on what language is used in
the actual selected editor window.

© 2011 Conrad Electronic

IDE

Syntax Highlighting

Element Stule tupe Yertical alignment
] o _1-] 1Eenter L]
Syrbal
Mumber Background Fort colar
Shring Mone - Window Text -
| dentifier]D —i]. —‘]
Reszerved word —Fant style 1 P |
E,ﬂemﬂm, Bold et custom fant .
it saparatar [V Italic . Capitalization effect
Sub background I Underline IJnchanged :_J
M arked block [+ Shike out
Library -
|+ Hidden | BeadOnly
[Multiline border
Borderz ...~ I
Left | ~| |l Black v
Top | ~| Bk v
Right | ~| |l Black v
Bottarn | _:] |. Black _:]
1 /f Syntax highlighting 'ui!
£ #define Ma¥(a, b) M\
2
void Proc(wvoid) [/ aaa A
: : =
& int Humber = 123; f/ View integer number stcyle
7 float FloatNHumber = 0.123e+2; ff View float numld
] Caprion = "Thiz Number iz " + IntToStr (Number): .
g Humber += O0x1FAT; f/ View HEX style i:l
|i] i | |rl|
Ok LCancel

You can change the attributes of the font, and the foreground- and background color. With Multiline
border a colored border can be drawn around the highlighted strings. Also case changes can be

87

made with the option Capitalization Effect. The selectable Elements have the following meaning:

Symbol: all non alpha-numeric characters

Number: all numeric characters

String: all characters that are recognized as strings

Identifier: all names that are not reserved words or part of the library
Reserved Word: alle reserved words of the destination language
Comment: comments

Preprocessor: preprocessor statements

Marked Block: marked editor blocks

© 2011 Conrad Electronic

88

C-Control Pro Mega Series

4.6.3

function names of the standard library

Default, Line separator and Sub background are not used.
Compiler Presetting

In the Compiler Presetting the standard values can be configured which will be stored during creation
of a new project. Presetting can be reached under Compiler in the Options menu.

Project prezet

kultithreading [Configure Threads]

[eaie Debugeods: | Configue Libray |

[] Create Mapfile

Select CPU
{(®) C-Control 32
() C-Contral 128

| Lok | [Xcaes |

A description of the options can be found under Project Options. The selection box "Configure
Library" is identical to the description in chapter Projects.

© 2011 Conrad Electronic

IDE

4.6.4 IDE Settings

Separate aspects of the IDE can be configured.

89

...................

IDE I interfaces | Internet Update | Terminal | Tools |

check for Transfer after Compilation
Reopen last project

open edit window maximized

shaw Splazh anly for shart time

[] Spelichecking
[] Ao Keyword Corection

[] suto-Feplace befare Compile

lizt of recently used projects
izt of recently uzed files

[] fllows more than one C-Contral instance

[Spellchecking]

| ok || X cancel |

o Transfer After Compiling Callup — After a program has been compiled but not transferred to the C-
Control Module then the user will be questioned whether or not the program should be started.

e Open Last Project — The last open project will be re-opened when the C-Control Pro IDE is started.

e Open Maximized Editor Window — When a file is opened the editor window will automatically be

switched to maximum size.

e Splashscreen Short Display - The Splashscreen is only displayed until the main window is

opened.

e Allow Multiple Instances Of C-Control Pro — When the C-Control Pro interface is started several
times it may create conflicts with regard to the USB interface.

Also here the lists of the "last opened projects” as well as the "last opened files" can be deleted.

© 2011 Conrad Electronic

90 C-Control Pro Mega Series

464.1 Interfaces

Through a selection box the connection to the application board can be set. USB connections will
start with the prefix "USB" and will then be successively numbered: USBO, USB1, ... Serial
interfaces will be handled equally. They will start with the prefix "COM": COMO, COM1, ..., aso.

IﬂE'ﬁﬁﬁﬁﬁé'

............................

Communicationpart I JSEN |1.[

[Search Interfaces] I:-I:l:nntn:ulTestl

Hardware Yerzion l

By use of the button "Search Interface" all interfaces will be evaluated until the command line
interface of C-Control Pro will react. In order to recognize an application board power must be
supplied and the firmware must not have stalled. It is recommended to switch the power off and on

again prior to the searching action.

The buttons "C-Control Test" and "Hardware Version" allow to immediately see whether or not the
selected interface can sensibly communicate with the C-Control Pro Module.

© 2011 Conrad Electronic

IDE 91

46.4.2 Internet Update

In order to check if any improvements or error corrections have been issued by Conrad Electronic the
Internet Update can be activated. When the selection box "Update Check Every n Days" is selected
then an update will be searched for in the Internet at an intenal of n days at every start of the IDE.
The parameter n can be set in the input field on the right.

The button "Update Check Now" will immediately activate an update search.

=2 In order to have the Internet update function correctly the MS Internet Explorer must not be in
"Offline" Mode.

i

|DE | Interfaoesiélnternet Update || Terminal | Tools |

| niteryal

Check all n days for update 1 ',:*:':1,

[Check for Update

Prowey 5ettingz

[] use Prosy

| ok || X cancel |

If e. g. the Internet access is restricted by a Proxy due to a firewall then the Proxy settings such as
address, user name and password can be entered in this dialog.

=» |f there are Proxy data set in the MS Internet Explorer then they will be of higher priority and will
thus overwrite the settings in this dialog.

© 2011 Conrad Electronic

92 C-Control Pro Mega Series

46.4.3 Terminal

Here you can set the serial parameter for the built in terminal program. For the Port entry an
available serial COM Port can be chosen from. Further the standard baudrates, the number of Data
Bits and Stop Bits, and the Flow Control is selectable.

Part | |ﬂ
Baud 00 [

Data Eits | g |ﬂ
Stop Bits | 1 |1]
Flow Contral | Mane |1]

Lok | | X el |

46.4.4 Tools

In the Tool settings the user can insert, delete and edit entries that defines external programs that
can be executed fast and simple from the IDE. The names of the programs can be found in the Tools
pulldown menu and can be started with a single click.

© 2011 Conrad Electronic

IDE 93

MHame i |

Path i E!

Parameter i |

sdd | | Delete | | Edt |

| 0K | | X Cancel |

For each program that is inserted, the user can choose the name, the execution path and the
parameters that are submitted.

4.7 Windows

When there are several windows opened within the editor area they can automatically be arranged
by use of commands in the Window Menu.

e Owerlap — The windows will be arranged on top of each other with each successive window placed
fractionally lower and more to the right than the preceeding one.

Beneath — The windows are placed vertically beneath each other.

Side By Side — Will arrange the windows next to each other from left to right.

Minimize All — Will minimize all windows to symbol size.

Close — Will close all active windows.

© 2011 Conrad Electronic

94

C-Control Pro Mega Series

4.8

Help

Under menu item Help the Help file can be opened by use of Contents (Key F1).

Menu item Program Version will open the window "Version Information" and will at the same time
copy the contents onto the clipboard.

These informations are important if a Support E-Mail needs to be sent to Conrad Electronic. Since
these informations are automatically placed onto the clipboard when Program Version is called up
the data can easily be added to the end of an E-Mail.

Version Information

C-Control IDE Wersion:1.60.0.0

Compact-C Compiler Werzion:1.26.0.0

Bootloader Yerzion: 1.00 Interpreter Werzion: 1.26
Hardware:C-Contral MEGA 128 Hardware Rew: 01
Connection Tepe:ISE Part

Total Mem: 1610076160 Free mer: B857226E00
Microsoft \Windows *P Professional Service Pack 2
Build: 2600 - WinDir: C:\WINDOWS

CPU: AtD Athlon(tm) =P 2600+

bodel: 8 Family: B Stepping: 1

IDSking: AuthenticakdD

Screen Rezolution: 1680:1050 Colors: 16777216

W 0K

If the user needs to find a certain search term in the Help file the Context Help may be of advantage.
If e. g. in the Editor the cursor stands ower the word "AbsDelay" and the correct parameters are
searched for then Context Help should be selected. This function will automatically use the word
under the cursor for a search term and will consequently show the results in the Help File.

- N E
| B Paste Ctrl+v
M€ contextHelp Cirl+F1

[E Insert Variable
{ u-:?}. Show Array

The command Context Help is also available in the editor window after a right mouse click.

© 2011 Conrad Electronic

IDE

95

© 2011 Conrad Electronic

Compiler 97

) Compiler

51 General Features

This domain provides information on the Compiler's properties and features which are independent of
the programming language used.

5.1.1 External RAM

The Application Board of Mega128 carries external RAM. This RAM is automatically recognized by
the Interpreter and used for the program to be carried out. For this reason a program memory of
appr. 63848 Bytes rather than appr. 2665 Bytes is available. For this it is not necessary to newly
compile the program.

=¥ If the SRAM is not needed it can be deactivated by JP7 and the ports will be free for other uses.

To deactivate the SRAM the jumper JP7 has to be moved to the left side (orientation: serial interface
shows to the left), such that the left pins of JP7 are connected.

5.1.2 Preprocessor

=» The Gnu Generic Preprocessor used here provides some additional functions which are
documented under http://nothingisreal.com/gpp/gpp.html. Only the functions described here however
have also together with the C-Control Pro Compiler been thoroughly tested. Using the here
undocumented functions will thus be at your own risk!

The C-Control dewelopment system contains a complete C-Preprozessor. The Preprocessor
processes the source text prior to Compiler start. The following commands are supported:
Definitions

By the command "#define" text constants are defined.

#defi ne synbol text constant

Since the Preprocessor runs ahead of the Compiler at each appearance of symbol in the source text
the symbol will be replaced by text constant.

Example
#define Pl 3.141
= |f a project consists of several sources then #define is a constant for all source files existing

following the file, in which the constant has been defined. It is thus possible to change the order of
source files in a project.

© 2011 Conrad Electronic

http://nothingisreal.com/gpp/gpp.html

98

C-Control Pro Mega Series

5121

Conditional Compiling

#i f def synbol

#else [/ optional

#endi f

It is possible to monitor which parts of the source texts are really being compiled. After a #ifdef
symbol instruction the following text is only compiled when symbol has also been defined by #define
symbol.

If there is an optional #else instruction then the source text will be processed after #else if the
symbol has not been defined.

Insertion of Text

#include path\file nanme

By this instruction a text file can be inserted into the source code.

=9 Because of some restrictions in the Preprocessor a path within a #include instruction must not
contain any blank characters!

Predefined Symbols

In order to ease the work with different versions of the C-Control Pro series there are a number of
definitions which are set depending on target system and Compiler project options. These constants
can be called up by #ifdef, #ifndef or #if.

Symbol Meaning
MEGA32 Configuration for Mega 32
MEGA128 Configuration for Mega 128
MEGA128CAN Configuration for Mega 128 CAN Bus
AVR32 Configuration for AVR 32
MEGA128 ARCH Mega 128 or Mega 128 CAN
CANBUS SUPP CAN Bus is supported
DEBUG Debug Data will be created
MAPFILE A Memory Layout will be computed

The following constants contain a string. It is sensible to use them in conjunction with text outputs.

Symbol Meaning
DATE Current Date
TIME Time of Compiling
LINE Current Line in Sourcecode

© 2011 Conrad Electronic

Compiler 99

5.1.3

5.14

FILE Name of Current Source File
FUNCTION Current Function Name
Example

Line number, file name and function name will be issued. Since file names may become quite long it
is recommended to dimension character arrays somewhat generous.

char txt[60];

txt=__LINE__;

Msg WiteText(txt); // I|ssue Line Nunber
Msg WiteChar(13); /'l LF

txt=__FILE_ _;

Msg WiteText(txt); // Issue File Nunber
Msg_WiteChar(13); /'l LF

txt=__FUNCTI ON__;

Msg WiteText(txt); // Issue Function Name
Msg WiteChar(13); /'l LF

Pragma Instructions

By use of the #pragma instruction output and flow of the Compiler can be controlled. The following
commands are authorized:

#pragma Error "xyz..." An error is created and text "xyz..." is issued
#pragma Warning "xyz..." A warning is created and text "xyz..." is issued
#pragma Message "xyz..." The text "xyz..." is issued by the Compiler
Example

These #pragma instructions are often used in conjunction with Preprocessor commands and
Predefined_Constants. A classical example is the creation of an error message in case specific
hardware criteria are not met.

#i f def MEGA128
#pragma Error "Counter Functions not with Tiner0O and Megal28"
#endi f

Map File

If during compilation a Map File has been generated then the memory size of the used variable can
there be ascertained.

Example

The project CNTO.cprj generates the following Map File during compilation:

© 2011 Conrad Electronic

100

C-Control Pro Mega Series

5.2

521

G obal Vari abl e Length Position (RAM Start)

Total Length: O bytes

Local Vari abl e Lengt h Position (Stack relative)
Function Pul se()

count 2 4

i 2 0

Total Length: 4 bytes

Functi on mai n()

count 2 2
n 2 0
Total Length: 4 bytes

From this list can be seen that no global variables are being used. There are further the two functions
"Pulse()" and "main()". Each one of these functions consumes a memory space of 4 Bytes on local
variables.

CompactC

One possibility to program the C-Control Pro Mega 32 or Mega 128 is offered by
the programming language CompactC. The Compiler translates the language
CompactC into a Bytecode which is then processed by the Interpreter of the C-
Control Pro. The language wlume of CompactC does essentially correspond with
ANSI-C. It is however reduced to some extent since the firmware had to be
implemented in a resource saving way. The following language constructs are
missing:

e structs/ unions

e typedef

e enum

e constants (const instruction)
pointer Arithmetic

Detailed program examples can be found in directory "Demo Programs" which was installed along
with the design interface. There example solutions can be found for almost every field of purpose.

The following chapter contains a systematic introduction into syntax and semantics of CompactC.

Program

A program consists of a number of instructions (such as "a=5;") which are distributed among various
Functions. The starting function, which must be present in every program, is the function "main()".
The following is a minimalistic program able to print a number into the output window:

© 2011 Conrad Electronic

Compiler 101

voi d mai n(voi d)

{

Msg Witelnt(42); // the answer to anything
}
Projects

A program can be separated into sewveral files which are combined in a project (see Project
Management). In addition to these project files Libraries can be added to the project which are able
to offer functions used by the program.

5.2.2 Instructions

Instruction

An instruction consists of several reserved command words, identifiers and operators and is at the
end terminated by a semicolon (;"). In order to separate various elements of an instruction there are
spaces in between the instruction elements which are called "Whitespaces". By “spaces” space
characters, tabulators and line feeds ("C/R and LF") are meant. It is of no consequence whether a
space is built by one or several "Whitespaces".

Simple Instruction:
a= 5;

= An instruction does not necessarily have to completely stand in one line. Since line feeds do
also belong to the space category it is legitimate to separate an instruction across several lines.

i f(a==5) /1 instruction across 2 |ines
a=a+10;

Instruction Block

Seweral instructions can be grouped into a block. Here the block is opened by a left tailed bracket (*{
"), followed by the instructions and closed at the end by a right tailed bracket ("}"). A block does not
necessariliy have to be terminated by a semicolon. I. e., if a block builds the end of an instruction
then the last character in the instruction will be the right tailed bracket.

i f(a>5)
{

a=a+l; /'l instruction bl ock
b=a+2;

Comments

There are two types of commentaries, which are the single line and the multi line commentaries. The
text within commentaries is ignored by the Compiler.

© 2011 Conrad Electronic

102

C-Control Pro Mega Series

¢ Single line commentaries start with "//"* and end up at the line’s end.
e Multi line commentaries start with "/*" and end up with "*/".

/* a
multi line
comentary */

/1l a single Iine comentary

Identifier
Identifier are the names of Functions or Variables.

e Valid characters are letters (A-Z,a-z), numbers (0-9) and the low dash ("_")
An identifier always starts with a letter

Upper and lower case writings are differentiated

Reserved Words are not allowed as identifier

The length of identifiers is unlimited

Arithmetic Expressions

An arithmetic expression is a quantity of values connected by Operators. In this case quantities can
either be Figures, Variables and Functions.

A simple example:
2 + 3

Here the numerical values 2 and 3 are connected by the Operator "+". An arithmetic value again
represents a value. In this case the value is 5.

Further examples:

a- 3

b + f(5)

2 +3*6

Following the rule "Dot before Line" here 3 times 6 is calculated first and then 2 is added. This
priority is in case of operators called precedence. A list of priorities can be found in the Precedence
Table.

= Comparisons too are arithmetic expressions. The comparison operators return a truth value of

"1" or "0", depening on whether the comparison was true or not. The expression "3 < 5" yields the
value "1" (true).

© 2011 Conrad Electronic

Compiler 103

Constant Expressions

An expression or portions of an expression can be constant. Portions of an expression can already
be calculated during Compiler runtime.

So e. g. the expression

12 + 123 - 15

is combined by the Compiler to
120.

In some cases expressions must be constant in order to be valid. E. g. also see Declaration of Array
Variables.

5.2.3 DataTypes

Values always are of a certain data type. Integer values (integral values; whole numbered values) in
CompactC are of the 8, 16 or 32 Bit wide data type, floating point values are always 4 byte long.

Data Type Sign Range Bit
char Yes -128 ... +127 8
unsigned char No 0...2558 8
byte No 0..2558 8
int Yes -32768 ... +32767 16
unsigned int No 0 ... 65535 16
word No 0 ... 65535 16
long (Megal28) Yes -2147483648 ... 32

2147483647
unsigned long No 0 ... 4294967295 32
(Megal28)
dword (Megal28) No 0 ... 4294967295 32
float Yes +1.175e-38 to £3.402e38 32

As one can see the data types "unsigned char" and byte, "unsigned int" and
word as well as "unsigned long" and dword are identical.

= Due to size restrictions of the interpreter, 32-Bit Integer are not available on
the Mega32.

Strings

There is no explicit "String" data type. A string is based on a character array. The size of the array
must be chosen in such a way that all characters of the string fit into the character array.
Additionally some space is needed for a terminating character (decimal Zero) in order to indicate the
end of the character string.

© 2011 Conrad Electronic

104

C-Control Pro Mega Series

5.2.4

Type Conversion

In arithmetic expressions it is very often the case that individual values are not of the same type. So
the data types of the following expression are combined (a is of type integer variable).

a+ 5.5

In this case a is first conwverted into the data type float and then 5.5 is added. The

data type of the resultis also float. For data type conversion there are the following

rules:

¢ Ifin alinkage of 8 Bitor 16 Bitinteger values one of the two data types is sign
afflicted ("signed") then the result of the expression is also sign afflicted. I. e. the
operation is executed "signed".

¢ If one of the operands is of the float type then the resultis also of the float type. If

one of the two operands happens to be of the 8 Bit or 16 Bit data type then it will be
converted into a float data type prior to the operation.

Variables

Variables can take on various values depending on the Data Type by which they have been defined.
A variable definition appears as follows:

Type Vari abl e Nare;

When seweral variables of the same type need to be defined then these variables can be stated
separated by commas:

Typ Nanel, Nane2, Nane3, ...;

As types are allowed: char, unsigned char, byte, int, unsigned int, word, long, dword, float
Examples:

int a;

int i,j;

float xyz;

Integer variables may have decimal figure values or Hex values assigned to. With Hex values the
characters "0x" will be placed ahead of the figure. Binary numbers can be created with the prefix "
Ob". With variables of the sign afflicted data type negative decimal figures can be assigned to by
putting a minus sign ahead of the figure.

=¥ Numbers without period or exponent are normally of type signed integer. To explicitly define an
unsigned integer write an "u" direct after the number. To declare a number to be 32-Bit, either the

value is greater 65535 or put an "I" after the number. Can be combined with "u" from unsigned.

Examples:

© 2011 Conrad Electronic

Compiler 105

word a;

int i,j;

a=0x3ff; /'l hex digits are always unsigned
x=0b1001; [l binary nunber

a=50000u; /'l unsigned

a=100ul ; /1 unsigned 32 Bit (dword)

i =15; /1 default is signed

j =-22; /1 signed

Floating Point Figures (data type float) may contain a decimal point and an exponent.

float x,y;

x=5.70;

y=2. 3e+2;

x=-5. 33e-1;

sizeof Operator

By the operator sizeof() the number of Bytes a variable takes up in memory can be determined.

Examples:

int s;
float f:

s=sizeof (f); [// the value of s is 4

=¥ \With arrays only the Byte length of the basic data type is returned. On order to calculate the
memory consumption of the array the value must be multiplied by the number of elements.

Array Variables

If behind the name, which in case of a variable definition is set in brackets, a figure value is written
then an array has been defined. An array will arrange the space for a defined variable manifold in
memory. With the following example definition

int x[10];

a tenfold memory space has been arranged for variable x. The first memory space can be addressed
by X[0], the second by x[1], the third by x[2], ... up to x[9] . When defining of course other index
dimensions can also be chosen. The memory space of C-Control Pro is the only limit.

Multi dimensional arrays can also be declared by attaching further brackets during variable definition:
int x[3][4]; /1l array with 3*4 entries

int y[2]1[2][2]); /] array with 2*2*2 entries

= Arrays may in CompactC have up to 16 indices (dimensions). The maximum value for an index

© 2011 Conrad Electronic

106

C-Control Pro Mega Series

is 65535. The indices of arrays are in any case zero based, i .e. each index will start with a 0.
= Only if the compiler option "Check Array Index Limits" is set, there will be a verification whether
or not the defined index limits of an array have been exceeded. Otherwise, if an index becomes too

large during program execution the access to alien variables will be tried which in turn may create a
good chance for a program breakdown.

Table support by predefined Arrays

Since version 2.0 of the IDE arrays can be predefined with values:

byte glob[10] = {1,2,3,4,5,6,7,8,9, 10};
flash byte fglob[2][2]={10, 11, 12, 13};

voi d mai n(voi d)

{
byte loc[5]= {2, 3, 4,5, 6};
byte xloc[2][2];
xl oc= fgl ob;

}

Because there is more flash memory than RAM available, it is possible with the flash keyword to
define data that are written in the flash memory only. These data can be copied to a RAM array with
same dimensions with an assignment operation. In this example this is done through "xloc= fglob".
This kind of assignment is not available in normal "C".

Direct Access to flash Array entries

With version 2.12 it is possible to access single entries in flash arrays:
flash byte glob[10] = {1,2,3,4,5,6,7,8,9, 10};

voi d nmai n(voi d)

{

int a;

a= glob[2];
}

= There is still one limitation: Only references to arrays that lie in RAM can be passed as function
parameters. This is not possible with references to flash arrays.

Strings

There is no explicit "String" data type. A string is based on a character array. The size of the array
must be chosen in such a way that all characters of the string fit into the character array.
Additionally some space is needed for a terminating character (decimal Zero) inorder to indicate the
end of the character string.

© 2011 Conrad Electronic

Compiler 107

Example for a character string with a 20 character maximum:
char stri[21];

As an exception char arrays may have character strings assigned to. Here the character string is
placed between quotation marks.

strl="hallo world!";

= Strings cannot be assigned to multi dimensional Char arrays. There are however tricks for
advanced users:

char str_array[3][40];
char single_str[40];

single_str="A String";
Str_StrCopy(str_array,single_str,40); // will copy single_str in the second string

This will work because with a gap of 40 characters after the first string there will in str_array be room
for the second string.

Visibility of Variables

When variables are declared outside of functions then they will have global visibility. I. e. they can be
addressed from ewvery function. Variable declarations within functions produce local variables. Local
variables can only be reached within the function. An example:

int a,b;

voi d funcl(void)

{ .
int a, x,vy;
/1 global b is accessable
/1 global a is not accessable since concealed by local a
/'l local x,y are accessable
/1 uis not accessable since |ocal to function main
}
voi d mai n(voi d)
{ .
int u;
/1l globale a,b are accessabl e
/1 local u is accessable
/'l X,y not accessable since local to function funcl
}

Global variables have a defined memory space which is available throughout the entire program run.

=¥ At program start the global variables will be initialized by zero. Local Variables get not initialized

© 2011 Conrad Electronic

108

C-Control Pro Mega Series

5.2.5

5.25.1

at the begin of a function!

Local variables will during calculation of a function be arranged on the stack. I. e. local variables
exist in memory only during the time period in which the function is executed.

If with local variables the same name is selected as with a global variable then the local variable will
conceal the global variable. While the program is working in the function where the identically named
variable has been defined the global variable cannot be addressed.

Static Variables

With local variables the property static can be placed for the data type.

voi d funcl(void)

{
}

static int a;

In opposition to normal local variables will static variables still keep their value even if the function is
left. At a further call-up of the function the static variable will have the same contents as when leaving
the function. In order to have the contents of a static variable defined at first access the static
variables will equally to global variables at program start also be initialized by zero.

Operators

Priorities of Operators

Operators separate arithmetic expressions into partial expressions. The operators are then evaluated
in the succession of their priorities (precedence). Expressions with operators of identical precedence
will be calculated from left to right.

Example:

i= 2+3*4-5; [/ result 9 => first 3*4, then +2, finally -5

The succession of the execution can be influenced by setting of parenthesis. Parenthesis have the
highest priority.

If the last example should strictly be calculated from left to right, then:

i= (2+3)*4-5; // result 15 => first 2+3, then *4, finally -5

A list of priorities can be found in Precedence Table.

Arithmetic Operators

All arithmetic operators with the exception of Modulo are defined for Integer and Floating Point data
types. Modulo is restricted to data type Integer only.

=¥ It must be observed that in an expression the figure 7 will have an Integer data type assigned to
it. If a figure of data type float should be explicitly created then a decimal point has to be added: 7.0

© 2011 Conrad Electronic

Compiler 109
Operator | Description Example Result
+ Addition 2+1 3
3.2+4 7.2
- Subtraction 2-3 -1
22-1.1el 11
* Multiplication 5*4 20
/ Division 712 3
7.0/2 35
% Modulo 15% 4 3
17 % 2 1
- Negative Sign -(2+2) -4
5.25.2 Bit Operators
Bit operators are only allowed for Integer data types
Operator | Description Example Result
& And Ox0f & 3 3
0xf0 & OxOf 0
| Or 113 3
0xf0 | OxOf Oxff
N exclusive Or Oxff ~ OxOf 0xfo
0xf0 ~ OxOf Oxff
~ Bit inversion ~Oxff 0
~0xf0 0xOf

5.25.3 Bit-Shift Operators

Bit-Shift operators are only allowed for Integer data types. With a Bit-Shift operation a 0 will always
be mowed into one end.

Operator Description Example Result
<< shift to left 1<<2 4
3<<3 24
>> shift to right 0xff >> 6 3
16 >>2 4

5254 In- /Decrement Operators

Incremental and decremental operators are only allowed for variables with Integer data types.

© 2011 Conrad Electronic

110

C-Control Pro Mega Series

5.2.55

5256

Operator Description Example Result
variable++ first variable value, after access variable a++ a
gets incremented by one (postincrement)
variable-- first variable value, after access variable a-- a
gets decremented by one (postdecrement)
++variable value of the variable gets incremented by ++a a+l
one before access (preincrement)
--variable value of the variable gets decremented by --a a-1
one before access (predecrement)
Comparison Operators
Comparison operators are allowed for float and Integer data types.
Operator Description Example Result
< smaller 1<2 1
2<1 0
2<2 0
> greater -3>2 0
3>2 1
<= smaller or equal 2<=2 1
3<=2 0
>= greater or equal 2>=3 0
3>=2 1
== equal 5= 1
1=2 0
1= not equal 21=2 0
21=5 1

Logical Operators

Logical operators are only allowed for Integer data types. Any value unequal null is meant to be a

logical 1. Only null is valid as logical 0.

Operator Description Example Result
&& logical And 1&&1 1
5&&0 0
I logical Or oJlo 0
110 1
! logical Not 12 0
10 1

© 2011 Conrad Electronic

Compiler 111

5.2.6 Control Structures

Control structures allow to change the program completion depending on expressions, variables or
external influences.

526.1 Conditional Valuation

With a conditional valuation expressions can be generated which will be conditionally calculated.
The form is:

(Expressionl) ? Expression2 : Expression3

The result of this expression is expression2, if expressionl had been calculated as unequal O,
otherwise the result is expression 3.

Examples:
a = (i>5) ?1i : 0
a= (i>b*2) ? i-5: b+1;

while(i> ((x>y) ? x 1 y)) i++

526.2 do .. while

With a do .. while construct the instructions can depending on a condition be repeated in a loop:

do Instruction while(Expression);

The instruction or the Instruction Block is being executed. At the end the Expression is evaluated. If
the result is unequal O then the execution of the expression will be repeated. The entire procedure
will constantly be repeated until the Expression takes on the value 0.

Example:

do

a=a+2;

whi | e(a<10);

do

{
a=a*2;
X=a;

} while(a);

=¥ The essential difference between the do .. while loop and the normal while loop is the fact that
inado .. while loop the instruction is executed at least once.

© 2011 Conrad Electronic

112

C-Control Pro Mega Series

5.2.6.3

break Instruction

A break instruction will leave the loop and the program execution will start with the next instruction
after the do .. while loop.

continue Instruction

When executing continue within a loop there will immediately be a new calculation of the

Expression. Depending on the result the loop will be repeated at unequal 0. At a result of O the loop
will be terminated.

Example:
do
{
a++;
i f(a>10) break; // will term nate | oop

} while(l); // endless |oop

for

A for loop is normally used to program a definite number of loop runs.
for(lnstructionl, Expression; Instruction2) |nstruction3;

At first Instructionl will be executed which normally contains an initialization. Following the
evaluation of the Expression takes place. If the Expression is unequal O Instruction2 and Instruction3
will be executed and the loop will repeat itself. When Expression reaches the value 0 the loop will be
terminated. As with other loop types at Instruction3 an Instruction Block can be used instead of a
single instruction.

for(i=0;i<10;i++)
{
if(i>a) a=i;
a- -

}

=¥ It must be observed that variable i will within the loop run through values 0 through 9 rather than 1
through 10!

If a loop needs to be programmed with a different step width Instruction2 needs to be modified
accordingly:

for(i=0;i<100;i=i+3) [// variable i does now increnent in steps to 3
{

a=5%i;
}

© 2011 Conrad Electronic

Compiler 113

break Instruction

A break instruction will leave the loop and the program execution starts with the next instruction
after the for loop.

continue Instruction

continue will immediately initialize a new calculation of the Expression. Depending on the result
Instruction2 will be executed at unequal 0 and the loop will repeat itself. A result of O will terminate
the loop.

Example:

for(i=0;i<10;i++)
{

}

i f(i==5) continue;

5.2.6.4 goto

Even though it should be awoided within structured programming languages, it is possible with goto
to jump to a label within a procedure:

/1 for loop with realized with goto
voi d mai n(voi d)

{ .

Int a;

a=0;
| abel O:

at++;

i f(a<10) goto | abel O;
}

5.26.5 if .. else

An if instruction does have the following syntax:

i f(Expression) Instructionl;
el se Instruction2;

After the if instruction an Arithmetic Expression will follow in parenthesis. If this Expression is
evaluated as unequal O then Instructionl will be executed. By use of the command word else an
alternative Instruction2 can be defined which will be executed when the Expression has been
calculated as 0. The addition of an else instruction is optional and is not necessary.

Examples:

© 2011 Conrad Electronic

114 C-Control Pro Mega Series

i f(a==2) b++;

i f(x==y) a=a+2;
el se a=a-2;

An Instruction Block can be defined instead of a single instruction.
Examples:

i f(x<y)
{

C++;
i f(c==10) c=0;
}

el se d--;

i f(x>y)

{
a=b*5;
b--;

5.26.6 switch

If depending on the value of an expression various commands should be executed a switch
instruction is an elegant solution:

switch(Expression)
{
case constant _1:
I nstruction_1;
br eak;

case constant _2:
I nstruction_2;
br eak;

case constant_n:
I nstruction_n;

br eak;

defaul t: /1 default is optional
I nstruction_O;

b

The value of the Expression is calculated. Then the program execution will jump to the constant

© 2011 Conrad Electronic

Compiler 115

corresponding to the value of the Expression and will continue the program from there. If no constant
corresponds to the value of the expression the switch construct will be left.

If a default is defined within a switch instruction then the instructions after default will be executed
if no constant corresponding to the value of the instruction has been found.

Example:

switch(a+2)
{
case 1:
b=b* 2;
br eak;

case 5*5:
b=b+2;
br eak;

case 100&0xf:
b=b/ c;
br eak;

defaul t:
b=b+2;
}

=» The execution of a switch statement is highly optimized. All values are stored inside a
jumptable. Therefore exists a constraint that the calculated Expression is of type signed 16 Bit
Integer (-32768 .. 32767). For this reason a e.g. "case > 32767" is rather senseless.

break Instruction

A break will leave the switch instruction. If break is left out ahead of case then the instruction will
be executed even when a jump to the preceeding case does take place:

switch(a)
{
case 1:
a++;
case 2:

a++; // is also executed at a val ue of a==

case 3:
a++; // is also executed at a value of a==1 or a==2

}

In this example all three "a++" instructions are executed if a equals 1.

© 2011 Conrad Electronic

116

C-Control Pro Mega Series

5.2.6.7

5.2.7

while

With a while instruction the instructions can depending on a condition be repeated in a loop.

whil e(Expression) Instruction;

At first the Expression is evaluated. If the result is unequal O then the Expression is executed. After
that the Expression is again calculated and the entire procedure will constantly be repeated until the
Expression takes on the value 0. An Instruction Block can be defined instead of a single instruction.

Example:

whi | e(a<10) a=a+2;

whi | e(a)

{
a=a*2;
X=a;

}

break Instruction
If a break is executed within the loop then the loop will be left and the program execution starts with
the next instruction after the while loop.

continue Instruction

An execution of continue within a loop will immediately initialize a new calculation of the Expression
. Depending on the result the loop will be repeated at unequal 0. A result of O will terminate the loop.

Example:

while(l) // endless |oop

{

a++;

i f(a>10) break; // will termnate the | oop
}
Functions

In order to structure a larger program it is separated into several sub-functions.
This not only improves the readability but allows to combine all program
instructions repeatedly appearing in functions. A program does in any case
contain the function "main”, which is started in first place. After that other
functions can be called up.

A simple example:

© 2011 Conrad Electronic

Compiler 117

voi d funcl(void)

{
/1 instructions in function funcl
}
voi d mai n(voi d)
{
/1 function funcl will be called up twce
funcl();
funcl();
}

Parameter Passing

In order to enable functions to be flexibly used they can be set up parametric. To do this the
parameters for the function are separated by commas and passed in parenthesis after the function
name. Similar to the variables declaration first the data type and then the parameter name are
stated. If no parameter is passed then void has to be set into the parenthesis.

An example:

void funcl(word paraml, float paranR)

{
Msg WiteHex(paranml); [// first paraneter out put

Msg_W it eFl oat (paran); [/ second paraneter output
}

=¥ Similar to local variables passed parameters are only visible within the function itself.
In order to call up function funcl by use of the parameters the parameters for call up should be
written in the same succession as they have been defined in funcl. If the function does not get

parameters the parenthesis will stay empty.

voi d mai n(voi d)

{

word a;

float f;

funcl1(128,12.0); // you can passs nunerical constants

a=100;

f=12.0;

funcl(a+28,f); // or yet variables too and even nunerical expressions
}
= When calling up a function all parameters must always be stated. The following call up is
inadmissible:
funcl(); /1 funcl gets 2 paraneters!
funcl(128); /1 funcl gets 2 paraneters!

© 2011 Conrad Electronic

118

C-Control Pro Mega Series

Return Parameters
It is not only possible to pass parameters. A function can also offer a return value. The data type of
this value is during function definition entered ahead of the function name. If no value needs to be

returned the data type used will be void.

int funcl(int a)

{
}

return a-10;

The return value is within the function stated as instruction "return Expression". If there is a function
of the void type then the return instruction can be used without parameters in order to leave the
function.

References
Since it is not possible to pass on arrays as parameters the access to parameters is possible
through references. For this a pair of brackets is written after the parameter names in the parameter

declaration of a function.

int StringlLength(char str[])

{
int i;
i =0;
while(str[i]) i++; // repeat character as |ong as unequal zero
return(i);
}
voi d nmai n(voi d)
{
int len;
char text[15];
text="hell o world";
| en=StringlLength(text);
}

In main the reference of text is presented as parameters to the function StringLength. If in a function
a normal parameter is changed then the change is not visible outside this function. With references
this is different. Through parameter str in StringLength the contents of text can be changed since str
is only the reference (pointer) to the array variable text.

= Presently arrays can only be passed "by Reference"!

Pointer Arithmetic

In the current C-Control Pro software also arithmetic on a reference (pointer) is permitted, as the
following example shows. The arithmetic is limited to addition, subtraction, multiplication and

© 2011 Conrad Electronic

Compiler 119

division.

voi d mai n(voi d)

{

int |en;

char text[15];

text="hello world";

| en=StringLengt h(text+2*3);
}

= Pointer arithmetic is currently experimental and may possibly still contain errors.

Strings as Parameter

Since Version 2.0 of the IDE it is possible to call functions with a string as parameter. The called
function gets the string as reference. Since references are RAM based and predefined strings are
stored in the flash memory, the compiler creates internally an anonymous variable, and copies the
data from flash into memory.

int StringLength(char str[])

{
}
voi d mai n(voi d)
{
int len;
| en=StringLength("hallo welt");
}

5.2.8 Tabellen

5.2.8.1 Operator Precedence

Rang Operator

13 @)

12 ++--1 ~ - (negatives Vorzeichen)
11 * | %

10 + -

9 << >>

8 < <= > >=
7 = I=

6 &

5 N

4 I

3 &&

© 2011 Conrad Electronic

120 C-Control Pro Mega Series

5.2.8.2 Operators

© 2011 Conrad Electronic

Compiler

5283 Reserved Words

The following words are reserved and cannot be used as identifier:

121

© 2011 Conrad Electronic

122

C-Control Pro Mega Series

5.3

531

BASIC

The second programming language for the C-Control Pro Mega Module is BASIC. The Compiler
translates the BASIC commands into a Bytecode which is then processed by the C-Control Pro
Interpreter. The language wolume of the BASIC dialect used here corresponds to a large extent to the
industry standard of the large software suppliers.

The following language constructs are missing:

¢ Object oriented programming
e Structures
e Constants

Detailed program examples can be found in directory "Demo Programs" which was installed along
with the design interface. There example solutions can be found for almost every field of purpose of
the C-Control Pro Module.

The following chapters offer a systematical introduction to syntax and semantics of C-Control Pro
BASIC.

Program

A program consists of a number of instructions (such as e. g. "a=5;") which are distributed among
various Eunctions. The starting function, which must be present in every program, is the function "
main()". The following is a simplistic program able to print a number into the output window:

Sub mai n()
Msg Witelnt(42) // the answer to anything
End Sub

Projects

A program can be separated into sewveral files which are combined in a project (see Project
Management). In addition to these project files Libraries can be added to the project which are able
to offer functions used by the program.

© 2011 Conrad Electronic

Compiler 123

5.3.2 Instructions

Instruction

An instruction consists of several reserved command words, identifiers and operators and is at the
end terminated by the end of the line. In order to separate various elements of an instruction there
are spaces in between the instruction elements which are called "Whitespaces". By “spaces” space
characters, tabulators and line feeds ("C/R and LF") are meant. It is of no consequence whether a
space is built by one or several "Whitespaces".

Simple Instruction:

a= 5

= An instruction does not necessarily have to completely stand in one line. By use of the
character (low dash) it is possible to extend the instruction into the next line.

If a=5 _ ' instruction across two |ines
a=a+10

=¥ |t is also possible to place more than one instruction into the same line. The ":" character (colon)
will then separate the individual instructions. For reason of better readability however this option
should rather seldom be used.

a=1l : b=2: c=3
Comments

Comments

There are two types of commentaries, which are the single line and the multi line commentaries. The
text within commentaries is ignored by the Compiler.

¢ Single line commentaries start with a single quotation mark and end up at the line’s end.
e Multi line commentaries start with "/*" and end up with "*/".

/* a
multi line
comentary */

a single line comentary

Identifier
Identifiers are the names of Functions or Variables.

Valid characters are letters (A-Z,a-z), numbers (0-9) and the low dash (')
An identifier always starts with a letter

Upper and lower case writings are differentiated

Reserved Words are not allowed as identifiers

© 2011 Conrad Electronic

124 C-Control Pro Mega Series

e The length of an identifier is unlimited

Arithmetic Expressions

An arithmetic expression is a quantity of values connected by Operators. In this case quantities can
either be Figures, Variables or Functions.

A simple example:
2 + 3

Here the numerical values 2 and 3 are connected by the Operator "+". An arithmetic value again
represents a value. In this case the value is 5.

Further examples:

a- 3

b + f(5)

2 +3*6

Following the rule "Dot before Line" here 3 times 6 is calculated first and then 2 is added. This
priority is in case of operators called precedence. A list of priorities can be found in the Precedence
Table.

=% Comparisons too are arithmetic expressions. The comparison operators return a truth value of
"1" or "0", depending on whether the comparison was true or not. The expression "3 < 5" yields the
value "1" (true).

Constant Expressions

An expression or portions of an expression can be constant. Portions of an expression can already
be calculated during Compiler runtime.

So e. g. the expression
12 + 123 - 15
is combined by the Compiler to

120.

In some cases expressions must be constant in order to be valid. E. g. also see Declaration of Array
Variables.

© 2011 Conrad Electronic

Compiler 125

5.3.3

534

Data Types

Values always are of a certain data type. Integer values (integral values; whole numbered values) in
BASIC are of the 8, 16 or 32 Bit wide data type, floating point values are always 4 byte long.

Data Type Sign Range Bit
Char Yes -128 ... +127 8
Byte No 0...255 8
Integer Yes -32768 ... +32767 16
Ulnteger No 0... 65535 16
Word No 0 ... 65535 16
Long (Megal28) Yes -2147483648 ... 2147483647 32
ULong No 0 ... 4294967295 32
(Megal28)

Single Yes +1.175e-38 to +3.402e38 32
= Due to size restrictions of the interpreter, 32-Bit Integer are not available on
the Mega32.

Strings

There is no explicit "String" data type. A string is based on a character array. The size of the array
must be chosen in such a way that all characters of the string fit into the character array.
Additionally some space is needed for a terminating character (decimal Zero) in order to indicate the
end of the character string.

Type Conversion
In arithmetic expressions it is very often the case that individual values are not of the same type. So the data types
a+ 5.5

In this case a is first conwerted into the Single data type and then 5.5 is added.
The data type of the resultis also Single. For data type conversion there are the
following rules:

¢ Ifin a linkage of 8 Bitor 16 Bitinteger values one of the two data types is sign
afflicted then the result of the expression is also sign afflicted.

¢ Ifone of the operands is of the Single type then the resultis also of the Single type. If

one of the two operands happens to be of the 8 Bit or 16 Bit data type then it will be
converted into a Single data type prior to the operation.

Variables

Variables can take on various values depending on the Data Type by which they have been defined.
A variable definition appears as follows:

© 2011 Conrad Electronic

126

C-Control Pro Mega Series

Di m Vari abl e Nane As Type

When seweral variables of the same type need to be defined then these variables can be stated
separated by commas:

Di m Nanel, Nane2, Nanme3 As I|nteger

As types are allowed: Char, Byte, Integer, Word, Single

Examples:

Dima As Integer

Dimi,j As Integer

Dim xyz As Single

Integer variables may have decimal figure values or Hex values assigned to. With Hex values the
characters "&H" will be placed ahead of the figure. Just as with CompactC it is also allowed to place
the prefix "Ox" ahead of the Hex values. Binary numbers can be created with the prefix "0b". With
variables of the sign afflicted data type negative decimal figures can be assigned to by putting a
minus sign ahead of the figure.

=¥ Numbers without period or exponent are normally of type signed integer. To explicitly define an
unsigned integer write an "u" direct after the number. To declare a number to be 32-Bit, either the
value is greater 65535 or put an "I" after the number. Can be combined with "u" from unsigned.

Examples:

Dima As Wrd

Dimi,j As Integer

a=&H3f f " hex nunbers are al ways unsi gned
a=50000u ' unsi gnhed

x=0b1001 ' binary nunber

a=100ul " unsigned 32 Bit (ULong)

i =15 ' default is signed

j=-22 ' signed

a=0x3f f " hex nunbers are al ways unsi gned

Floating Point Figures (data type Single) may contain a decimal point and an exponent.
Dimx,y As Single

x=5.70

y=2. 3e+2

x=-5.33e-1

SizeOf Operator

By the operator Size Of() the number of Bytes a variable takes up in memory can be determined.

Examples:

© 2011 Conrad Electronic

Compiler 127

Dims As Integer
Dimf As Single

s=SizeOf(f) ' the value of s is 4

= \With arrays only the Byte length of the basic data type is returned. On order to calculate the
memory consumption of the array the value must be multiplied by the number of elements.

Array Variables

If behind the name, which in case of a variable definition is set in parenthesis, a figure value is written
then an array has been defined. An array will arrange the space for a defined variable manifold in
memory. With the following example definition

Di m x(10) As Integer

a tenfold memory space has been arranged for variable x. The first memory space can be addressed
by X[0], the second by x[1], the third by x[2], ... up to x[9] . When defining of course other index
dimensions can also be chosen. The memory space of C-Control Pro is the only limit.

Multi dimensional arrays can also be declared by attaching further indices during variable definition,
which have to be separated by commas,:

Dimx(3,4) As Integer ' array with 3*4 entries
Dmy(2,2,2) As Integer ' array with 2*2*2 entries

=% Arrays may in BASIC hawe up to 16 indices (dimensions). The maximum value for an index is
65535. The indices of arrays are in any case zero based, i .e. each index will start with a 0.

= Only if the compiler option "Check Array Index Limits" is set, there will be a verification whether
or not the defined index limits of an array have been exceeded. Otherwise, if an index becomes too

large during program execution the access to alien variables will be tried which in turn may create a
good chance for a program breakdown.

Table support by predefined Arrays

Since version 2.0 of the IDE arrays can be predefined with values:

Dimglob(10) = {1,2,3,4,5,6,7,8,9,10} As Byte
Fl ash fglob(2,2)={10, 11, 12,13} As Byte

Sub nmai n()
Dimloc(5)= {2,3,4,5,6} As Byte
Dim xloc(2,2) As Byte

x|l oc= fgl ob
End Sub

Because there is more flash memory than RAM available, it is possible with the flash keyword to

© 2011 Conrad Electronic

128 C-Control Pro Mega Series

define data that are written in the flash memory only. These data can be copied to a RAM array with
same dimensions with an assignment operation. In this example this is done through "xloc= fglob".

Direct Access to flash Array entries
With version 2.12 it is possible to access single entries in flash arrays:
Flash glob(10) = {1,2,3,4,5,6,7,8,9, 10} As Byte

Sub mai n()
Dima As Byte

a= gl ob(2)
End Sub

=¥ There is still one limitation: Only references to arrays that lie in RAM can be passed as function
parameters. This is not possible with references to flash arrays.

Strings

There is no explicit "String" data type. A string is based on an array of data type Char. The size of
the array must be chosen in such a way that all characters of the string fit into the character array.
Additionally some space is needed for a terminating character (decimal Zero) inorder to indicate the
end of the character string.

Example for a character string with a 20 character maximum:

Dimstr1(21) As Char

As an exception Char arrays may have character strings assigned to. Here the character string is
placed between quotation marks.

strl="hallo world!"

=P Strings cannot be assigned to multi dimensional Char arrays. There are however tricks for
advanced users:

Dimstr_array(3,40) As Char
Dim Single_str(40) As Char

Single_str="A String"
Str_StrCopy(str_array, Single_str,40) // will copy Single_str in the second string

This will work because with a gap of 40 characters after the first string there will in str_array be room
for the second string.

Visibility of Variables

When variables are declared outside of functions then they will have global visibility. I. e. they can be

© 2011 Conrad Electronic

Compiler 129

addressed from ewvery function. Variable declarations within functions produce local variables. Local
variables can only be reached within the function. An example:

Dima,b As Integer

Sub funci()
Dima, x,y As |Integer
/1 global b is accessible
/1 global a is not accessible since concealed by |ocal a
/1l local x,y is accessible
/1 u is not accessible since |local to function main
End Sub

Sub mai n()

Dimu As Integer

/1 global a,b is accessible

/1 local u is accessible

/1l X,y uis not accessible since local to function main
End Sub

Global variables have a defined memory space which is available throughout the entire program run.

=¥ At program start the global variables will be initialized by zero. Local Variables get not initialized
at the begin of a function!

Local variables will during calculation of a function be arranged on the stack. I. e. local variables
exist in memory only during the time period in which the function is executed.

If with local variables the same name is selected as with a global variable then the local variable will
conceal the global variable. While the program is working in the function where the identically named
variable has been defined the global variable cannot be addressed.

Static Variables

With local variables the property Static can be placed for the data type.

Sub funci()

Static a As |nteger
End Sub

In opposition to normal local variables will static variables still keep their value even if the function is
left. At a further call-up of the function the static variable will have the same contents as when leaving
the function. In order to have the contents of a Static variable defined at first access the static
variables will equally to global variables at program start also be initialized by zero.

5.3.5 Operators

Priorities of Operators

Operators separate arithmetic expressions into partial expressions. The operators are then evaluated

© 2011 Conrad Electronic

130

C-Control Pro Mega Series

5.35.1

in the succession of their priorities (precedence). Expressions with operators of identical precedence
will be calculated from left to right.

Example:

i= 2+3*4-5 result 9 => first 3*4, then +2, finally -5

The succession of the execution can be influenced by setting of parenthesis. Parenthesis have the
highest priority.

If the last example should strictly be calculated from left to right, then:

i= (2+3)*4-5 result 15 => first 2+3, then *4, finally -5

A list of priorities can be found in Precedence Table.

Arithmetic Operators

All arithmetic operators with the exception of Modulo are defined for Integer and Floating Point data
types. Modulo is restricted to data type Integer only.

=% It must be observed that in an expression the figure 7 will have an Integer data type assigned to
it. If a figure of data type Single should be explicitly created then a decimal point has to be added:
7.0

Operator | Description Example Result
+ Addition 2+1 3
32+4 7.2
- Subtraction 2-3 -1
22-11el 11
* Multiplication 5*4 20
/ Division 712 3
7.0/2 3.5
Mod Modulo 15 Mod 4 3
17 Mod 2 1
- Negative Sign -(2+2) -4
5.3.5.2 Bitoperators
Bit operators are only allowed for Integer data types
Operator Description Example Result
And And &HOf And 3 3
&Hf0 And &HOf 0
Or Or 10r3 3
&Hf0 Or &HOf &HIff
Xor exclusive Or &Hff Xor &HOf &HfO

© 2011 Conrad Electronic

Compiler 131

5.3.5.3

5354

5.35.5

&Hf0 Xor &HOf &Hff
Not Bit inversion Not &Hff 0
Not &Hf0 &HOf

= All these Operators work arithmetically: E.g. Not &HO01 = &Hfe. Both values are evaluated to
true in an If expression. This is different to a logical Not operator, where Not &H01 = &HOO.

Bit-Shift Operators

Bit-Shift operators are only allowed for Integer data types. With a Bit-Shift operation a 0 will always
be mowed into one end.

Operator Description Example Result
<< shift to left 1<<?2 4
3<<3 24
>> shift to right &Hff >> 6 3
16 >>2 4

In- /Decrement Operators

Incremental and decremental operators are only allowed for variables with Integer data types.

Operator Description Example Result

variable++ first variable value, after access variable at+ a
gets incremented by one (postincrement)

variable-- first variable value, after access variable a-- a
gets decremented by one (postdecrement)

++variable value of the variable gets incremented by ++a a+l
one before access (preincrement)

--variable value of the variable gets decremented by --a a-1
one before access (predecrement)

=¥ These operators are normally not a part of a Basic dialect and have their origin in the world of C
inspired languages.

Comparison Operators

Comparison operators are allowed for Single and Integer data types.

© 2011 Conrad Electronic

132 C-Control Pro Mega Series

Operator Description Example Result
< smaller 1<2 1
2<1 0
2<2 0
> greater -3>2 0
3>2 1
<= smaller or equal 2<=2 1
3<=2 0
>= greater or equal 2>=3 0
3>=2 1
= equal 5=5 1
1=2 0
<> not equal 2<>2 0
2<>5 1

5.3.6 Control Structures

Control structures allow to change the program completion depending on expressions, variables or
external influences.

5.3.6.1 Do Loop While

With a Do ... Loop While construct the instructions can depending on a condition be repeated in a

loop:

Do

I nstructions
Loop Wil e Expression

The instructions are being executed. At the end the Expression is evaluated. If the result is unequal
0 then the execution of the expression will be repeated. The entire procedure will constantly be

repeated until the Expression takes on the value 0.

Examples:

Do
a=a+2

Loop Wile a<10

Do
a=a*2
X=a

Loop Wiile a

=¥ The essential difference between the Do Loop While loop and the normal Do While loop is the

fact that in a Do Loop While loop the instruction is executed at least once.

© 2011 Conrad Electronic

Compiler 133

Exit Instruction

An Exit instruction will leave the loop and the program execution starts with the next instruction after
the Do Loop While loop.

Example:
Do
a=a+l
If a>10 Then
Exit ' WII term nate |oop
End | f

Loop Wiile 1 ' Endless |oop

536.2 Do While

With a while instruction the instructions can depending on a condition be repeated in a loop:

Do Wil e Expression
I nstructions
End Wil e

At first the Expression is evaluated. If the result is unequal O then the expression is executed. After
that the Expression is again calculated and the entire procedure will constantly be repeated until the
Expression takes on the value O.

Examples:

Do While a<10

a=a+2
End Wil e
Do Wiile a

a=a*2

X=a
End Wil e

Exit Instruction

If an Exit instruction is executed within a loop than the loop will be left and the program execution
starts with the next instruction after the While loop.

Example:

Do Wiile 1 " Endl ess | oop
a=a+1
If a>10 Then

© 2011 Conrad Electronic

134

C-Control Pro Mega Series

5.3.6.3

Exit ' WII term nate |oop
End If
End Wil e

For Next

A For Next loop is normally used to program a definite number of loop runs.

For Counter Variable=Startvalue To Endval ue Step Stepw dth
I nstructions
Next

The Counter Variable is set to a Start Value. Then the instructions are repeated until the End Value
is reached. With each loop run the value of the Counter Variable is increased by one step width
which may also be negative. The stating of the step width after the End Value is optional. If no Step
Width is stated it has the value 1.

=¥ Since the For Next loop will be used to especially optimized the counter variable must be of the
Integer type.

Example:

For i=1 To 10
If i>a Then
a=i
End If
a=a-1
Next

For i=1 To 10 Step 3 'Increnment i in steps of 3
If i>3 Then
a=i
End | f
a=a-1
Next

=¥ In this location please note again that arrays are in any case zero based. A For Next loop should
thus rather run from 0 through 9.

Exit Instruction

An EXxit instruction will leave the loop and the program execution starts with the next instruction after
the For loop.

Example:

For i=1 To 10
If i=6 Then

© 2011 Conrad Electronic

Compiler 135

Exi t
End If
Next

5364 Goto

Even though it should be awided within structured programming languages, it is still possible with
goto to jump to a label within a procedure. In order to mark a label the command word Lab is set in
front of the label name.

" For loop with goto will realize
Sub mai n()

Dima As |Integer

a=0
Lab I abel 1

a=a+l

I f a<l10 Then

Goto | abel 1

End If

End Sub

5365 If .. Else

An If instruction does have the following syntax:

I f Expressionl Then
Instructionsl

El sel f Expression2 Then
I nstructions2

El se
I nstructions3

End | f

After the if instruction an Arithmetic Expression will follow. If this Expression is evaluated as unequal

0 then Instructionl will be executed. By use of the command word else an alternative Instruction2
can be defined which will be executed when the Expression has been calculated as 0. The addition
of an else instruction is optional and not really necessary.

If directly in an Else branch an If instruction needs again to be placed then it is possible to initialize
an If again direcly by use of an Elself. Thus the new If does not need to be interlocked into an Else
block and the source text remains more clearly.

Examples:
If a=2 Then

b=b+1
End If

© 2011 Conrad Electronic

136 C-Control Pro Mega Series

I f x=y Then
a=a+2
El se
a=a- 2
End If

I f a<5 Then
a=a-2

El sel f a<l10 Then
a=a-1

El se
a=a+1

End If

5.3.6.6 Select Case

If depending on the value of an expression various commands should be executed then a Select
Case instruction seems to be an elegant solution:

Sel ect Case Expression
Case constant _conpari sonl
Instructions_1
Case constant _conpari son2
I nstructions_2

Case constant _conpari son_x
I nstructions_x
El se ' Else is optional
I nstructions
End Case

The value of the Expression is calculated. Then the program execution will jump to the first constant
comparison that can be evaluated as true and will continue the program from there. If no constant
comparison can be fulfilled the Select Case construct will be left.

For constant comparisons special comparisons and ranges can be defined . Here examples for all
possibilities:

© 2011 Conrad Electronic

Compiler 137

5.3.7

= The new features that allow to use comparisons are introduced for Select Case statements with
IDE version 1.71. This extension is not available for CompactC switch statements.

=» The execution of a Select Case statement is highly optimized. All values are stored inside a
jumptable. Therefore exists a constraint that the calculated Expression is of type signed 16 Bit
Integer (-32768 .. 32767). For this reason a e.g. "Case > 32767" is rather senseless.

Exit Instruction
An Exit will leave the Select Case instruction.

If an Else is defined within a Select Case instruction then the instructions after Else will be
executed if no constant comparison could be fulfilled.

Example:

Sel ect Case a+2
Case 1
b=b*2
Case = 5*5
b=b+2
Case 100 And &Hf
b=b/c
Case < 10
b=10
Case <= 10
b=11
Case 20 To 30
b=12
Case > 100
b=13
Case >= 100
b=14
Case <> 25
b=15
El se
b=b+2
End Case

=¥ In CompactC the instructions will be continued after a Case instruction until a break comes up
or the switch instruction is left. With BASIC this is different: Here the execution of the commands
will break off after a Case, if the next Case instruction is reached.

Functions

In order to structure a larger program it is separated into several sub-functions.
This not only improves the readability but allows to combine all program
instructions repeatedly appearing in functions. A program does in any case
contain the function "main”, which is started in first place. After that other
functions can be called up from main. A simple example:

© 2011 Conrad Electronic

138

C-Control Pro Mega Series

Sub funci()
" Instructions in function funcl

End Sub

Sub mai n()
" Function funcl will be called up twce
funcl()
funcl()

End Sub

Parameter Passing

In order to enable functions to be flexibly used they can be set up parametric. To do this the
parameters for the function are separated by commas and passed in parenthesis after the function
name. Similar to the variables declaration first the parameter name and then the data type is stated.
If no parameter is passed then the parenthesis will stay empty.

An example:

Sub funcl(paraml As Word, paran2 As Single)

Msg_WiteHex(paraml) ' first paraneter output
Msg_WiteFl oat (paran) ' second paraneter output
End Sub

=¥ Similar to local variables passed parameters are only visible within the function itself.

In order to call up function funcl by use of the parameters the parameters for call up should be
written in the same succession as they have been defined in funcl. If the function does not get
parameters the parenthesis will stay empty.

Sub nmai n()
Dima As Wrd
Dmf As Single

funcl1(128,12.0) ' you can pass Nunmerical constants

a=100

f=12.0

funcl(a+28,f) ' or yet variables too and even nunerical expressions
End Sub

= When calling up a function all parameters must always be stated. The following call up is
inadmissible:

funcl() " funcl gets 2 paraneters!
funcl(128) " funcl gets 2 paraneters!

© 2011 Conrad Electronic

Compiler 139

Return Parameters

It is not only possible to pass parameters. A function can also offer a return value. The data type of
this value is during function definition entered after the parameter list of the function.

Sub funcl(a As Integer) As |nteger
Return a-10
End Sub

The return value is within the function stated as instruction "return Expression". If there is a function
without return value then the return instruction can be used without parameters in order to leave the
function.

References

Since it is not possible to pass on arrays as parameters the access to parameters is possible
through references. For this the attribute "ByRef" is written ahead of the parameter name in the
parameter declaration of a function.

Sub StringLength(ByRef str As Char) As Integer
Dimi As Integer

i =0
Do While str(i)
i=i+1 ' Repeat character as |ong as unequal zero
End Wil e
Return i
End Sub
Sub mai n()

Di m Len As Integer
Di m Text (15) As Char

Text="hell o worl d"
Len=Stri ngLengt h(Text)
End Sub

In main the reference of text is presented as parameters to the function StringLength. If in a function
a normal parameter is changed then the change is not visible outside this function. With references
this is different. Through parameter str can in StringLength the contents of text be changed since str
is only the reference (pointer) to the array variable text.

= Presently arrays can only be presented "by Reference"!

Pointer Arithmetic

In the current C-Control Pro software also arithmetic on a reference (pointer) is permitted, as the
following example shows. The arithmetic is limited to addition, subtraction, multiplication and
division.

© 2011 Conrad Electronic

140

C-Control Pro Mega Series

5.3.8

5.3.8.1

Sub mai n()
Dim Len As Integer
Di m Text (15) As Char

Text="hell o worl d"
Len=Stri ngLengt h(Text +2*3)
End Sub

= Pointer arithmetic is currently experimental and may possibly still contain errors.

Strings as Parameter

Since Version 2.0 of the IDE it is possible to call functions with a string as parameter. The called
function gets the string as reference. Since references are RAM based and predefined strings are
stored in the flash memory, the compiler creates internally an anonymous variable, and copies the

data from flash into memory.

Sub

End

Sub

End

Tables

Operator Precedence

Dim Len As I|nteger

Len=StringLength("hallo welt")

StringLength(ByRef str As Char) As |nteger

Rang Operator

10 @)

9 - (negatives Vorzeichen)
8 *

7 Mod

6 + -

5 << >>

4 = <> < <= >=
3 Not

2 And

1 Or Xor

© 2011 Conrad Electronic

Compiler

5.3.8.2 Operators

5383 Reserved Words

The following words are reserved and cannot be used as identifiers:

141

© 2011 Conrad Electronic

142

C-Control Pro Mega Series

5.4

54.1

Assembler

With IDE Version 2.0 it is possible to integrate Assembler routines into a project. The used
Assembler is the GNU Open Source Assembler AVRA. The sources of the AVRA Assembler can be
found in the installation directory "GNU". Assembler routines that are called from CompactC and
Basic run in full CPU speed, in contrary to the Bytecode Interpreter. It is possible to pass paraneters
to Assembler procedures and get their return values. Also global CompactC and Basic variables can
be accessed. The compiler recognizes assembler files with their ".asm" ending. Assembler sources
are added to a project like CompactC or Basic files.

= The programming in assembly language is only recommended for the advanced user of the
system. The programming is very complex and error prone, and should only be used by these
people that have a very good knowledge of the system.

Literature

You can find manifold literature about assembly language programming on the internet and in the
book trade. Important are the "AVR Instruction Reference Manual" that can be found on the Atmel
website and in the "Manual" directory of the C-Control Pro installation, and the "AVR Assembler
User Guide" from the Atmel website.

An Example

The structure of assembly routines is explained in the following example (also included in the demo
programs). In the project the CompactC source code file must have the ending ".cc", the assembler
sourcefiles have to end with ".asm".

/1 Conpact C Source
void procl $asn("tagl")(void);
int proc2 $asm("tag2")(int a, float b, byte c);

int globil;
voi d nmai n(voi d)
{ .
int a;
procl();
a= proc2(11, 2.71, 33);
}

The procedures procl and proc2 must first be declared, before they can be called. This happens with
the keyword $asm. The declaration in Basic looks similar:

' Basic delaration of assenbler routines

$Asm("tagl") procl()

$Asm("tag2") proc2(a As Integer, b As Single, ¢ As Byte) As Integer

© 2011 Conrad Electronic

Compiler 143

The strings "tagl" and "tag" are visible in the declaration. These strings are defined in a ".def" file, if
the Assembler routines are really called from the CompactC and Basic source. In this case the ".
def" file looks like:”

;o .def file

.equ globl = 2
.define tagl 1
.define tag2 1

When all the routines in the Assembler sources are placed in ".ifdef ..." directions, only the routines
are assembled that are really called. This saves space at the code generation. Additionally the
position of the global variables are stored in the definition file. The ".def" file is automatically included
in the translation of the assembler files, it needed not to be manually included.

Here follows the assembler source of procedure procl. In this source the global variable globl is set
to the value 42.

; Assenbl er Source
.ifdef tagl
procl:
; global variable access exanple
; write 42 to global variable globl

MOVW R26, R8 ; get Ranmflop fromregister 8,9
SuUBlI R26, LON gl obl) ; subtract index fromglobl to get address
SBCl R27, Hl GH(gl ob1)

LDl R30, LOW 42)

ST X+, R30
CLR R30 ; the high byte is zero
ST X, R30
ret
.endif

In the second part of the assembler sources the passed parameters "a" and "c" are added as
integers, and then the sum is returned.

© 2011 Conrad Electronic

; exanple for accessing and returning paraneter
; we have int proc2(int a, float b, byte c);

; nove paraneter stack pointer into Z
| oad paraneter "a" into R24,25

| oad byte paraneter "c" into X (R26)
hi byte zero because parameter is byte

add X to Rz24, 25
; copy stack pointer from R6
; add 4 to sp - ADIWonly works for R24 and greater

; copy back to stack pointer |ocation

; store R24,25 on stack

144 C-Control Pro Mega Series

.ifdef tag2

proc2:
; return a + c
MOVW R30, R10
LDD R24, Z+5
LDD R25, Z+6
LDD R26, Z+0
CLR R27
ADD R24, R26
ADC R25, R27
MOVW R30, R6
ADI W R30, 4
MOVW R6, R30
ST Z+, R24
ST Z, R25
ret

.endif

54.2 Data Access

Global Variables

In the Bytecode Interpreter in the register R8 and R9 lies the 16-Bit pointer to the end of the global
variable memory. If a global variable that is defined in the ".def" file should be accessed, the address
of the variable can be calculated when the variable position is subtracted from the R8, R9 16-Bit

pointer. This looks like:

; gl obal

vari abl e access exanpl e

; write 0042 to global variable globl
MOVW R26, R8
SUBI R26, LON gl obl) ; subtract index fromglobl to get address
SBCI R27, Hl GH(gl ob1)

; get Ram Top fromregister 8,9

When the address of the global variable is in the X register pair (R26,R27), the desired value (in our
example 42) can be written there:

LDl R30, LON(42)

ST X+, R30
CLR R30
ST X R30

; the high byte of 42 is zero

© 2011 Conrad Electronic

Compiler 145

Parameter Passing

Parameters are passed on the stack of the Bytecode Interpreter. The stackpointer (SP) lies in the
register pair R10,R11. Are parameters passed, they are written one after another onto the stack.
Since the stack grows to the bottom, in our example (integer a, floating point b, byte c) the memory
layout looks like this:

SP+5: a (type integer, length 2)
SP+1: b (type float, length 4)
SP+0: ¢ (type byte, length 1)

If the variables a and ¢ should be accessed, a will be found at SP+5 and ¢ at SP. In the following
Assembler code the stack pointer SP (R10,R11) will be copied in the register pair Z (R30,R31), and
the parameters a and c are loaded indirect via Z.

; exanple for accessing and returning paraneter
; we have int proc2(int a, float b, byte c);

MOVW R30, R10 ; nove paraneter stack pointer into Z
LDD R24, Z+5 ; load paraneter "a" into R24,25

LDD R25, Z+6

LDD R26, Z+0 ; load byte paranmeter "c" into X (R26)
CLR R27 ; hi byte zero because paraneter is byte

The parameter a and ¢ are now in the register pairs X and R24,25. Now they can be added:

ADD R24, R26 ; add X to R24, 25
ADC R25, R27

Return Parameters

In the routine proc2 the sum is returned. Return parameters are written on the Parameter Stack
(PSP) of the Bytecode Interpreter. The pointer to the PSP lies in the register pair R6,R7. To return a
parameter the PSP pointer must be increased by 4 before the parameter can be written. In opposite
to the normal parameter passing the type of the return parameter is not important. All parameter on
the Parameter Stack have the same length of 4 bytes.

, return a + c

MOVW R30, R6 ; copy stack pointer from R6

ADI W R30, 4 ; add 4 to sp - ADIWonly works for R24 and greater
MOVW R6, R30 ; copy back to stack pointer |ocation

ST Z+, R24 ; store R24,25 on stack

ST Z, R25

© 2011 Conrad Electronic

146

C-Control Pro Mega Series

5.4.3

5.5

Guideline

The most important topics on how to program in Assembler for C-Control Pro are explained here:

Assembler calls are atomic. An Assembler call cannot be interrupted by Multithreading or an
Bytecode Interruptroutine. This is similar to Library calls. An interrupt is recorded immediately by
the internal interrupt structure, but the corresponding Bytecode interrupt routine is called after the
assembler procedure has been ended.

Do not change the Y Register (R28 and R29), it is used from the interpreter as a data stack
pointer. This register is not restored in interrupt routines.

The register RO, R1, R22, R23, R24, R25, R26, R27, R30, R31 can be used in Assembler routines
without backup. If other register are used, the contents must be saved first. Normally these values
are stored on the stack. E.g.
at begin: PUSH R5

PUSH R6

at end: POP R6
POP R5

An Assembler routine is left with a "RET" instruction. At this point the CPU stack must be in the
same state as before the call. The contents of the register that need to be backuped must be
restored.

Debugging only works in the Bytecode Interpreter, it is not possible to debug in Assembler.

The Bytecode Interpreter has a fixed memory layout. In no case use Assembler directives like .
byte, .db, .dw, .dseg or similar. In an access to the data segment this would cause the
Assembler to overwrite memory that is used by the Bytecode Interpreter. If global variables are
needed, they should be declared in CompactC and Basic, and then can be accessed like
described in the chapter Data Access.

Do not set the address of an Assembler routine with .org. The IDE generates itself a .org directive
when starting the AVRA Assembler.

ASCII Table
ASCII Table
CHA |DEC HEX |BIN Description
F
NUL [000 000 00000000 | Null Character
SOH 001 001 00000001 | Start of Header
STX (002 002 00000010 | Start of Text
ETX |003 003 00000011 | End of Text

© 2011 Conrad Electronic

Compiler

147

004 004 00000100 | End of Transmission
005 005 00000101 | Enquiry
006 006 00000110 [Acknowledgment
007 007 00000111 |Bell
008 008 00001000 |Backspace
009 009 00001001 |Horizontal TAB
010 00A 00001010 |Line Feed
011 00B 00001011 |Vertical TAB
012 00C 00001100 |Form Feed
013 00D 00001101 | Carriage Return
014 00E 00001110 | Shift Out
015 00F 00001111 | ShiftIn
016 010 00010000 | Data Link Escape
017 011 00010001 |Device Control 1
018 012 00010010 |Device Control 2
019 013 00010011 |Device Control 3
020 014 00010100 |Device Control 4
021 015 00010101 | Negative Acknowledgment
022 016 00010110 | Synchronous Idle
023 017 00010111 |End of Transmission Block
024 018 00011000 | Cancel
025 019 00011001 |End of Medium
026 01A 00011010 | Substitute
027 01B 00011011 |Escape
028 01C 00011100 |File Separator
029 01D 00011101 | Group Separator
030 O1E 00011110 [Requestto Send, Record Separator
031 01F 00011111 | Unit Separator
SP 032 020 00100000 | Space
! 033 021 00100001 | Exclamation Mark
“ 034 022 00100010 | Double Quote

© 2011 Conrad Electronic

148

C-Control Pro Mega Series

035 023 00100011 | Number Sign
$ 036 024 00100100 | Dollar Sign
% 037 025 00100101 |Percent
& 038 026 00100110 | Ampersand
‘ 039 027 00100111 | Single Quote
(040 028 00101000 | Left Opening Parenthesis
) 041 029 00101001 |Right Closing Parenthesis
* 042 02A 00101010 |Asterisk
+ 043 02B 00101011 |Plus
: 044 02C 00101100 | Comma
- 045 02D 00101101 [Minus or Dash
046 02E 00101110 | Dot
CHA |DEC HEX |[BIN Description
F
/ 047 02F 00101111 |Forward Slash
0 048 030 00110000
1 049 031 00110001
2 050 032 00110010
3 051 033 00110011
4 052 034 00110100
5 053 035 00110101
6 054 036 00110110
7 055 037 00110111
8 056 038 00111000
9 057 039 00111001
058 03A 00111010 | Colon
; 059 03B 00111011 | Semi-Colon
< 060 03C 00111100 |Less Than
= 061 03D 00111101 |Equal
> 062 03E 00111110 | Greater Than

© 2011 Conrad Electronic

Compiler

149

? 063 O3F 00111111 | Question Mark
@ 064 040 01000000 | AT Symbol
A 065 041 01000001

B 066 042 01000010

C 067 043 01000011

D 068 044 01000100

E 069 045 01000101

F 070 046 01000110

G 071 047 01000111

H 072 048 01001000

I 073 049 01001001

J 074 04A 01001010

K 075 04B 01001011

L 076 04C 01001100

M 077 04D 01001101

N 078 04E 01001110

@) 079 04F 01001111

P 080 050 01010000

Q 081 051 01010001

R 082 052 01010010

S 083 053 01010011

T 084 054 01010100

U 085 055 01010101

\Y 086 056 01010110

W 087 057 01010111

X 088 058 01011000

Y 089 059 01011001

z 090 05A 01011010

[091 05B 01011011 |Left Opening Bracket
\ 092 05C 01011100 |Back Slash
] 093 05D 01011101 |Right Closing Bracket

© 2011 Conrad Electronic

150

C-Control Pro Mega Series

A 094 05E 01011110 | Caret

CHA |DEC HEX |BIN Description

_ 095 O5F 01011111 {Underscore
096 060 01100000

a 097 061 01100001

b 098 062 01100010

o 099 063 01100011

d 100 064 01100100

e 101 065 01100101

f 102 066 01100110

g 103 067 01100111

h 104 068 01101000

[105 069 01101001

j 106 06A 01101010

k 107 06B 01101011

I 108 06C 01101100

m 109 06D 01101101

n 110 O6E 01101110

0 111 06F 01101111

p 112 070 01110000

q 113 071 01110001

r 114 072 01110010

S 115 073 01110011

t 116 074 01110100

u 117 075 01110101

Y 118 076 01110110

w 119 077 01110111

X 120 078 01111000

y 121 079 01111001

© 2011 Conrad Electronic

Compiler

151

z 122 07A 01111010

{ 123 07B 01111011 |Left Opening Brace
| 124 07C 01111100 | Vertical Bar

} 125 07D 01111101 |Right Closing Brace
= 126 07E 01111110 |Tilde

DEL (127 O7F 01111111 |Delete

© 2011 Conrad Electronic

Libraries 153

6 Libraries

In this part of the documentation all attached Help functions are described which allow the user to
comfortably gain access to the hardware. At the beginning of each function the syntax for CompactC
and BASIC is shown. After that the description of functions and involved parameters will follow.

6.1 Internal Functions

To allow the Compiler to recognise the internal functions present in the Interpreter these functions
must be defined in library "IntFunc_Lib.cc". If this library is not tied in no outputs can be performed
by the program. The following would e. g. be a typical entry in "IntFunc_Lib.cc":

void Msg_WiteHex$Opc(0x23) (Word val);

This definition states that the function ("Msg_WriteHex") in the Interpreter is called up by a jump
vector of 0x23 and a word has to be transferred to the stack as a parameter.

=% Changes in the library "IntFunc_Lib.cc" may cause that the functions declared there can no
longer be executed correctly.

6.2 General

In this chapter all single functions are collected that cannot be categorized to other chapters in the
library.

6.2.1 AbsDelay

General Functions

Syntax
voi d AbsDel ay(word ns);

Sub AbsDel ay(nms As Word);

Description
The function Absdelay() waits for a specified number of milliseconds.

=¥ This function works in a very accurate manner, but suspends the bytecode interpreter. A thread change
will not happen during this time. Interrupts are recognized, but will not be processed since the interpreter
is necessary for this operations.

=9 Please use Thread Delayinstead of AbsDelayif you work with threads. If you call an AbsDelay(1000)
in an endless loop nevertheless, the following will happen: Since the thread is changing after 5000 cycles
(default value) to the next thread, the next thread will begin after after about 5000 * 1000ms. This happens
because an AbsDelay() call will be treated like on cycle.

© 2011 Conrad Electronic

154 C-Control Pro Mega Series

Parameter

nms wait duration in mlliseconds

6.2.2 Sleep

General Functions

Syntax

voi d Sl eep(byte ctrl);

Sub Sl eep(ctrl As Byte)

Description

Using this function the Atmel CPU is set in one of the 6 different sleep modes. The exact functionality is
provided in the Atmel Mega Reference Manual in the chapter "Power Management and Sleep Modes". The
value of ctrl is written into the bits SMO and SM2. The sleep enable bit (SE in MCUCR) is set and a
assembler sleep instruction is executed.

Parameter

trl Initialization (SMO to SM2)

Sleep Modes

SM2 SM1 SMO Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby
1 1 1 Extended Standby

6.3 Analog-Comparator

The Analog Comparator allows to compare two analog signals. The result of this comparison is returned
as either "0" or "1".

6.3.1 AComp

AComp Functions Example

Syntax

© 2011 Conrad Electronic

Libraries 155

6.3.2

voi d AConp(byte node);

Sub AConp(node As Byte);

Description

The Analog Comparator allows to compare two analog signals. The result of this comparison is returned
as either "0" or "1". (Comparator Output). The negative input is Mega32: AIN1 (PortB.3), Megal28: AIN1
(PortE.3). The positive input can either be Mega32: AINO (PortB.2), Megal28: AINO (PortE.2) , or an internal
reference woltage of 1,22V.

Parameter

mode working mode

Mode Values:

0x00 external inputs (+)AINO and (-)AIN1 are used
0x40 external Input (-)AIN1and internal reference woltage are used
0x80 Analog-Comparator gets disabled

AComp Example

Example: Usage of Analog-Comparators

/1 AConp: Anal og Conpar at or
/1 Mega32: Input (+) PB2 (PortB.2) bzw. band gap reference 1,22V

/1 I nput (-) PB3 (PortB.3)
/1 Megal28: Input (+) PE2 (PortE.2) bzw. band gap reference 1,22V
/1 I nput (-) PE3 (PortE. 3)

/'l used Library: IntFunc_Lib.cc

/1 The function AConp returns the value of the conparator.

/1 If the voltage on input PB2/PE2 is greater than the input PB3/PE3 the

/1 function AConp returns the val ue 1.

/1 Nbde:

/1 0x00 external inputs (+)AINO and (-)AINl are used

/1 0x40 external input (-)AINl1 and the internal reference voltage are used
/1 0x80 the Anal og- Conparator is disabled

/1 In this exanple you can call AConp with paranmeter 0 (both inputs are used)

/1 or with 0x40 (internal reference voltage on (+) input, external |nput PB3/PE3)

e e e
/1 main program

I

voi d mai n(voi d)

{

while (true)

© 2011 Conrad Electronic

156

C-Control Pro Mega Series

6.4

{
i f (AConp(0x40)==1) /1l Input (+) band gap reference 1,22V
{
Msg WiteChar('1l'); /1l Qutput: 1
}
el se
{
Msg WiteChar('0'); /1l Qutput: O
}
/1l the conparator value is read all 500ns
AbsDel ay(500);
}

Analog-Digital-Converter

The Micro Controller has an Analog Digital Converter with a resolution of 10 Bit. I. e. measured
wltages can be displayed as integral numbers from 0 through 1023. Reference woltage for the lower
limit is GND lewel (0V). The reference woltage for the upper limit can be selected at will.

o External Reference Voltage

e AVCC with capacitor on AREF

¢ Internal Reference Voltage 2.56V with capacitor on AREF

Analog Inputs ADCO ... ADC7, ADC BG, ADC GND

For the ADC the Inputs ADCO ... ADC7 (Port A.0 to A.7 with Mega32, Port F.0 to F.7 with
Megal28), an internal Band Gap (1.22V) or GND (0V) are available. ADC_BG and ADC_GND can
be used for review of the ADC.

If X is a digital measuring value then the corresponding woltage value u is calculated as follows:

u = x * Reference Voltage / 1024

If the external reference wltage e. g. produced by a reference wltage IC is 4.096V, then the
difference of one hit of the digitized measuring value corresponds to a wltage difference of 4mV, or:

u=x*0,004Vv

=¥ The result of an AD conversion can be influenced, if any Port Bit (configured for output) on the same
Port as the AID channel, is changed during the measurement.

© 2011 Conrad Electronic

Libraries 157

Differential Inputs

ADC22x 10 Differential Inputs ADC2, ADC2, Gain 10 ; Offset Measurement
ADC23x 10 Differential Inputs ADC2, ADC3, Gain 10

ADC22x200 Differential Inputs ADC2, ADC2, Gain 200 ; Offset Measurement
ADC23x200 Differential Inputs ADC2, ADC3, Gain 200

ADC20x1 Differential Inputs ADC2, ADCO, Gain 1
ADC21x1 Differential Inputs ADC2, ADC1, Gain 1
ADC22x 1 Differential Inputs ADC2, ADC2, Gain 1 ; Offset Measurement
ADC23x1 Differential Inputs ADC2, ADC3, Gain 1
ADC24x1 Differential Inputs ADC2, ADC4, Gain 1
ADC25x 1 Differential Inputs ADC2, ADC5, Gain 1

ADC2 is the negative input.

The ADC can also perform differential measurements. The result can either be positive or negative.
The resolution during differential operation amounts to +/- 9 bit and is displayed in Two's
Complement format. For differential operation an amplifier with gains of V: x1, x10, x200 is available.
If X is a digital measuring value then the corresponding wltage value u is calculated as follows:

u = x * Reference Voltage / 512 / V

6.4.1 ADC_Disable

ADC Functions

Syntax
voi d ADC_Di sabl e(voi d);

Sub ADC_Di sabl e()

Description

This function disables to the A/ID-Converter to reduce power consumption.

Parameter

None

6.4.2 ADC_Read

ADC Functions

Syntax
word ADC_Read(void);

Sub ADC Read() As Word

© 2011 Conrad Electronic

158 C-Control Pro Mega Series

Description

The function ADC_Read delivers the digitized measured value from one of the 8 ADC ports. The port
number (0..7) has been given as a parameter in the call of ADC Seft(). The result is in the range from 0 to
1023 according to the 10bit resolution of the A/ID-Converter. The analog inputs ADCO to ADC7 can be
measured against ground, or differentiation measurement with gain factor of 1/10/100 can be made.

Return Parameter

measured value at the ADC-Port

6.4.3 ADC_ReadInt

ADC Functions

Syntax
word ADC_Readl nt (voi d);

Sub ADC Readlnt() As Word

Description

This function is used to read the measurement value after a successful ADC-Interrupt. The ADC-Interrupt
gets triggered after the AD conversion is completed and a new measurement value is available. See
ADC Setintand ADC _Startint. The function ADC_Read delivers the digitized measured value from one of
the 8 ADC ports. The port number (0..7) has been given as a parameter in the call of ADC_Set(). The
result is in the range from 0 to 1023 according to the 10bit resolution of the A/ID-Converter. The analog
inputs ADCO to ADC7 can be measured against ground, or differentiation measurement with gain factor of
1/10/100 can be made.

Return Parameter

measured value of ADC-Port

6.4.4 ADC_Set

ADC Functions

Syntax
word ADC Set (byte v_ref, byte channel);

Sub ADC Set(v_ref As Byte, channel As Byte) As Wrd

Description

The function ADC_Set initializes the Analog-Digital converter. The reference voltage and the measurement
channel number is selected and the A/D converter is prepared for usage. After the measurement the value
is read with ADC Read().

© 2011 Conrad Electronic

Libraries 159

=¥ The result of an A/D conversion can be influenced, if any Port Bit (configured for output) on the same
Port as the A/D channel, is changed during the measurement.

Parameter

channel port number (0..7)of ADC (Port A.0 to A7 at Mega32, Port F.0 to F.7 at Megal128)

v_ref reference voltage (see table)
Name Value Description
ADC VREF BG 0xCO 2,56Vinternal reference voltage
ADC_VREF VCC 0x40 supply voltage (5V)
ADC VREF EXT 0x00 external reference voltage on PAD3

For the location of PAD3 see Jumper Application Board M32 or M128.

6.45 ADC_Setint

ADC Functions

Syntax
word ADC Setlnt(byte v _ref, byte channel);

Sub ADC Setlint(v_ref As Byte,channel As Byte) As Wrd

Description

The function ADC_Setint initializes the Analog-Digital converter for interrupt usage. The reference voltage
and the measurement channel number is selected and the A/D converter is prepared for the
measurement. An interrupt service routine must be defined. After successful interrupt the value can be
read with ADC_ReadInt().

=¥ The result of an A/D conversion can be influenced, if any Port Bit (configured for output) on the same
Port as the AID channel, is changed during the measurement.

Parameter

channel port number (0..7)of ADC (Port A0 to A7 at Mega32, Port F.0 to F.7 at Megal128)

v_ref reference woltage (see table)
Name Value Description
ADC VREF BG 0xCO 2,56Vinternal reference voltage
ADC VREF VCC 0x40 supply voltage (5V)
ADC VREF _EXT 0x00 external reference voltage on PAD3

For the location of PAD3 see Jumper Application Board M32 or M128.

© 2011 Conrad Electronic

160

C-Control Pro Mega Series

6.4.6

6.5

ADC_Startint

ADC Functions

Syntax
void ADC Startlnt(void);

Sub ADC Startlnt()

Description

The measurement is started if the AID converter has previously been initialized to interrupt service with a
call to ADC_Setint(). After the measurement is ready, the interrupt gets triggered.

Parameter

None

CAN Bus

The CAN bus (Controller Area Network Data Sheet) is an asynchronous serial bus system and
belongs to the field buses. It is internationally standardized in ISO 11898 and defines the Layer 1
(physical layer) and 2 (data security layer).

The CAN-bus was deweloped in 1983 from Bosch. Originally, the CAN-Bus was deweloped for the
automotive sector, because with increasing vehicle electronics the wiring harnesses got larger, and a
solution for weight and cost reduction had to be found. This successful and very safe approach is not
only used today in the automotive industry, but also in the areas of automation, aviation, aerospace
and medical technology.

The CAN signals of the C-Control Pro MEGA128CAN are available on pins X4_13 (CANL) and X4_14
(CANH) . Multiple CAN-bus network participants (eg several MEGA128CAN units) can be connected
over the two pins. The first and last stations have to be completed with a 120 Ohm resistor. As a
data cable, a twisted pair cable should be used. For shorter distances of a few centimeters up to 2
meters, even a simple parallel cable (twin lead) can be used.

C+Control C.Control (CsContral [C+Control
MEGA128CAN MEGA128CAN MEGA128CAN MEGA128CAN
UNIT 1 UMNIT 2 UNIT 3 UMNIT n

CANH CANAL CAN-H CANL CANH CAN-L CAN-H CANL

CAN-HIGH
|R1 Rz
|1208 120R
CAN-LOW

The MEGA128CAN supports the low- and high-speed bus (10 kbit/s to 1 Mbit/s). For theoretical line
lengths, depending on the bus speed, see the chart below.

© 2011 Conrad Electronic

Libraries 161

Speed Cable Length
1 Mbit/s 40m

Up to 500 kbit/s 100m

Up to 125 kbit/s 500m

Less than 125 kbit/s Up to 1000m

The line lengths are highly dependent on the used cables and the number of participants. It is
possible to use a "twist-pair cables with a characteristic impedance 108-132 Ohm. A maximum of
32 MEGA128CAN units can operate on a bus. It is best to start at the theoretical maximum speed
for the used cable length, and to lower the transfer rate when there is no packet transfer at all or
there occur too many packet errors.

The MEGA128CAN supports the "Base frame format” CAN 2.0A (11 bit identifier) and the extended
frame format "CAN 2.0B (29 bit identifier).

To use the CAN bus in your own projects together with the C-Control Pro Megal28 CAN, it is
essential to understand the CAN data format and the technical details of the CAN bus. Background
information can be found in books and in Wikipedia: http://de.wikipedia.org/wiki/
Controller_Area_Network

Message Objects

The active CAN bus controller in the C-Control Pro 128 CAN (AT90CAN128) works with 15
independent message objects (MOb) with which one can send and receive messages with certain
identifiers. For this purpose the message objects are parameterized with CAN_SetMOb() for the
related task.

=» Message Objects with a low MOb number have always precedence before a MOb with a higher
number. When two MOb's are capable to receive a certain message, the message will be received
from the MOb with the lower number.

CAN Protocol

The CAN bus controller can simultaneously process normal packets (CAN 2.0A) and extended
packets (CAN 2.0B). CAN bus identifier are passed as 32-bit dword (ULong). Depending on the type
of packets an identifier is 11-bit (V2.0 part A) or 29-bit long (V2.0 part B). The unused bits are
ignored. The maskID determines which packages are received for a specific identifier (ID). Only the
bits in the maskID that are "1" are to be reviewed at a bit comparison between the set identifier and
the ID of the incoming packet.

automatic reply
If a Message Obiject is set to automatic reply, the MOb inherits the Data Length Code (DLC) of the

incoming remote trigger package. l.e. the sender of the trigger packet determines with the DLC the
number of data bytes that are sent in the reply packet.

© 2011 Conrad Electronic

http://de.wikipedia.org/wiki/Controller_Area_Network
http://de.wikipedia.org/wiki/Controller_Area_Network

162

C-Control Pro Mega Series

6.5.1

Message FIFO
During the initialization of the CAN library the user provides RAM for the message FIFO, in which all

incoming CAN packets are stored. The received messages can then be read asynchronously from
the FIFO.

CAN Examples

In this chapter some initialization examples are given to clarify the operation of the CAN Library.
Initialization

In any event, the CAN library must be initialized before use. This example is for the CAN bus at a
speed of 1 mega bps, and for a FIFO RAM with 10 entries.

byte fifo_buf[140];

CAN_I ni t (CAN_1MBPS, 10, fifo_buf);

Reception

1. On MOb 2 messages of type CAN 2.0A are received, that have exactly an identifier of 0x123.

CAN_Set Mb(2, 0x123, Ox7ff, CAN_RECV);

2. On MOb 3 messages of type CAN 2.0B are received, that have exactly an identifier of 0x12345.
CAN_Set Mb(3, 0x12345, Ox1fffffff, CAN_RECV| CAN _EXTID);

3. On MOb 3 messages of type CAN2.0A and CAN 2.0B are received, because the
CAN_IGN_EXTID flag is set. Because the maskID is null messages with all identifiers are received.
Since CAN_IGN_RTR is set, normal and trigger packets are accepted.

CAN_Set Mb(3, 0x12345, 0, CAN_RECV| CAN_| GN_EXTI D] CAN_| GN_RTR);

4. On MOb 2 messages of type CAN 2.0A are received, that havwe an identifier of 0x120, 0x121,
0x122 or 0x123.

CAN_Set Mb(2, 0x120, Ox7fc, CAN_RECV);

Send
1. On MOb 0 is sent a CAN 2.0A message with ID 0x432 and 6 data byte.

byte data[8], i;

© 2011 Conrad Electronic

Libraries 163

for(i=0;i<8;i++) datal[i]=i;
CAN_Set MOb(0, 0x432, 0, CAN_SEND);
CAN_MObSend(0, 6, data);

2. On MOb 1 a CAN 2.0B message will be sent with ID 0x12345678 and 8 data.
byte data[8], i;
for(i=0;i<8;i++) datal[i]=i;

CAN_Set Mb(1, 0x12345678, 0, CAN_SEND| CAN_EXTI D);
CAN_MDbSend(1, 8, data);

Automatic Reply

MOb 4 is set to automatic reply. The data bytes provided with CAN_SetMOb () are sent when a
CAN 2.0B trigger message is received with ID of 0x999. The number of transmitted data bytes
depends on the DLC incoming trigger message.

byte data[5], i;
for(i=0;i<5;i++) datali]=i;

CAN_Set MOb(4, 0x999, Ox1fffffff, CAN_REPL| CAN_EXTID);
CAN_MObSend(4, 5, data);

6.5.2 CAN_EXxit

CAN Bus Functions

Syntax
voi d CAN _Exit (void);

Sub CAN_Exit ()

Description

The CAN chip functions are turned off.

6.5.3 CAN_GetInfo

CAN Bus Functions

Syntax

byte CAN_Getlnfo(byte infotype);

© 2011 Conrad Electronic

164

C-Control Pro Mega Series

6.5.4

Sub CAN CetlInfo(infotype As Byte) As Byte

Description

Returns information about the number of received CAN messages and CAN transmission errors.

Parameter

infotype selected CAN Bus information

Return Par

ameter

CAN Libraryinformation

infotype parameter:

Value

Definition

Meaning

CAN_MSGS

Number of already received CAN messages in the FIFO

N

CAN_ERR_RECV

Number of CAN receive errors (max. 255)

CAN_ERR_TRAN

Number of CAN send errors (max. 255)

CAN_Init

CAN Bus Functions

Syntax

void CAN I nit(byte speed, byte fifo_len,

byte fifo addr[]);

Sub CAN Init(speed As Byte, fifo len As Byte, fifo_addr As Byte[]);

Description

Initializes the CAN functions. During initialization the user provides a RAM buffer for the reception of CAN
messages. Inside this buffer a total of fifo_len messages can be stored. The RAM area must have the size
fifo_len * 14 bytes. If the FIFO is full, incoming CAN messages are not stored.

=¥ The user-provided RAM buffer must remain reserved during the use of the CAN interface. Since local
variables will be released after leaving the function, it usually makes sense to declare the buffer as a
global variable.

Parameter
speed CAN Bus transmission speed

fifo_len

Number of entries in the receive FIFO

fifo_addr RAMaddress of the reception buffer

© 2011 Conrad Electronic

Libraries 165

speed parameter:

Value Definition CAN Baudrate
0 CAN 10KBPS 10.000bps
1 CAN 20KBPS 20.000bps
2 CAN 40KBPS 40.000bps
3 CAN 100KBPS 100.000bps
4 CAN 125KBPS 125.000bps
5 CAN 200KBPS 200.000bps
6 CAN 250KBPS 250.000bps
7 CAN 500KBPS 500.000bps
8 CAN 800KBPS 800.000bps
9 CAN _1MBPS 1.000.000bps

6.55 CAN_Receive

CAN Bus Functions

Syntax
byte CAN_Receive(byte data[]);

Sub CAN Recei ve(ByRef data[] As Byte) As Byte

Description

If messages are in the receive FIFO, the 14-byte data is copied in the user array, which must have a length
of 14 bytes. Is bit 31 of the IDT is setin the received message, then RTR was setin the CAN packet.

Parameter
data Arrayin which the CAN message is copied
Return Parameter

Length of CAN Packetdata (0-8 Byte)

Structure of the data set

Byte 0O: MOb Number (0-14)

Byte 1-4: 29-BitIDT (at V2.0 part AMsgs the upper bits are null)
Byte 5: Length of CAN Data (0-8)

Byte 6-13: Packetdata

© 2011 Conrad Electronic

166

C-Control Pro Mega Series

6.5.6

6.5.7

CAN_MObSend

CAN Bus Functions

Syntax
voi d CAN_MbbSend(byte nob, byte len, byte data[]);

Sub CAN_MObSend(mob As Byte, len As Byte, ByRef data]] As Byte);

Description

ACAN message is sentover the bus. If, however, the CAN_REPL flag was setat CAN_SetMOb (), the data
for the automatic reply will be saved and not sentimmediately.

Parameter
mob MOb Number (0-14)

n Length of the data to send
ata Arrayin der

o)

(o}

CAN_SetMOb

CAN Bus Functions

Syntax
voi d CAN_Set MOb(byte npbb, dword ID, dword maskl D, byte flag);

Sub CAN_Set Mb(nob As Byte, ID As ULong, masklD As ULong, flag As Byte);

Description

Mit dieser Funktion werden die Parameter fir eine Message Object (MOb) gesetzt. Der Identifier und die
Identifier Maske werden als dword (ULong) Ubergeben. Bei einem 11-Bit Identifier werden die oberen Bits
ignoriert. Die maskID wird only beim Empfang genutzt. Nur wenn ein Bit in der maskID gesetzt ist, wird
beim Nachrichtenempfang an der gleichen Bitposition im Identifier geprift, ob der empfangene Identifier
Ubereinstimmt.

Parameter

mob MOb Number(0-14)

1D Identifier

maskIiD Identifier Mask

flag Operationparameter for the Message Object (MOb)

flag Parameter:

Value Definition Description

© 2011 Conrad Electronic

Libraries

6.6

6.6.1

167

0x01 CAN RECV Nachrichtenempfang auf diesem MOb
0x02 CAN RTR Das Remote Trigger Bit wird gesetzt
0x04 CAN _EXTID Die CAN Nachricht hat eine 29-Bit ID (V2.0 part B)
0x08 CAN REPL Automatic Reply wird initiiert
0x10 CAN IGN RTR In der ID Maske wird RTR nicht gesetzt
0x20 CAN IGN EXTID In der ID Maske wird IDEMSK nicht gesetzt
0x40 CAN SEND Auf diesem MODb soll gesendet werden
Clock

The internal software clock is clocked by the 10ms interrupt of Timer2. Time and date can be set and then
continue to run independently. Leap years are taken into account. Depending on the Quartz inaccuracy the
error is between 4-6 seconds per day. Acorrection factor in 10ms ticks can be applied, thatis added every

hour to the internal counter.

Example: If you have a deviation of 9.5 sec for 2 days, then you have to correct a deviation of 9.5/ (2 * 24) =

0.197 sec. This corresponds to a correction factor of 20, if the software clock goes in advance, or -20 else.

=¥ When Timer 2 off, or used for other purposes, the internal software clock is not functional.

Clock_GetVal

Clock Functions

Syntax

byte Cl ock_Get Val (byte indx);

Sub C ock_CetVal (i ndx As Byte) As Byte

Description

All Date and Time values of the internal software clock can be read.

=¥ The values of day and month are zero based, a one should be added when printing.

Parameter

indx

index of date or time parameter

#define Index Meaning
CLOCK_SEC 0 Second
CLOCK_MIN 1 Minute
CLOCK_HOUR 2 Hour
CLOCK_ DAY 3 Day
CLOCK MON 4 Month
CLOCK_YEAR 5 Year

© 2011 Conrad Electronic

168

C-Control Pro Mega Series

6.6.2

6.6.3

Return Parameter

requested time parameter

Clock_SetDate

Clock Functions

Syntax

voi d Cl ock_Set Dat e(byte day, byte non,

Sub Cl ock_Set Date(day As Byte, npbn As Byte,

Description

Sets the date of the internal software clock.

= The values of day and month are zero based.
Parameter

day Day

mon Month
year Year

Clock_SetTime

Clock Functions

byte year);

year As Byte)

Syntax

void Cl ock_SetTi me(byte hour, byte nin,

Sub C ock_Set Ti ne(hour As Byte, min As Byte,

Description

byte sec,

sec As Byte,

char corr);

corr As Char)

Sets the time of the internal software clock. For a description of the correction factor refer to chapter Clock.

Parameter

hour Hour

min Minute

sec Second

corr Correction Factor

© 2011 Conrad Electronic

Libraries 169

6.7 DCF 77

All DCF routines are realized in library "LCD_Lib.cc". For use of this function the library "DCF_Lib.
cc" has to be tied into the project.

RTC with DCF 77 Time Synchronization

The DCF 77 Time Signal

The logical informations (time informations) are transmitted in addition to the normal frequency
(carrier frequency of the transmitter, i. e. 77.5 kHz). This is performed by negative modulation of the
signal (decrease of carrier amplitude to 25%). The start of the decrease lies at the respective
beginning of the seconds 0 ... 58 within a minute. In second 59 there is no decrease, so the
following second mark can indicate the beginning of a minute and the receiver can be synchronized.
The sign duration yields the logical value of the signs: 100 ms are "0", 200 ms are "1". Because of
this there are 59 bits for informations available within one minute. From these the second marks 1
through 14 are used for operation informations which are not meant for DCF 77 users. The second
marks 15 through 19 indicate the transmitter antenna, the time zone and will give notice of coming
time changes.

From second 20 through 58 the time information for the respective following minute will be
transmitted serially in from of BCD numbers, whereby in any case the least significant bit will be the

start bit.

Bits Meaning

20 Start bit (in any case "1")
21-27 Minute

28 Parity Minute
29-34 Hour

35 Parity Hour

36 -41 Day of the Month
42 - 44 Weekday

45 - 49 Month

50 - 57 Year

58 Parity Date

This signifies that reception must be in progress for at least one full minute before time information
can be provided. The information decoded during this minute is only secured by three parity bits. So
two incorrectly received bits will already lead to a transmission error that can not be recognised in
this way. For higher demands additional checking mechanisms can be used, such as plausibility
check (is the received time within the admissible limits) or multiple reading of the DCF 77 time
information with data comparison. Another possibility would be to compare the DCF time with the
current RTC time and only allow a specific deviation. This method does not work right after program
start since the RTC has to be set first.

Description of the example program "DCF_RTC.cc"

© 2011 Conrad Electronic

170

C-Control Pro Mega Series

6.7.1

The program DCF_RTC.cc represents a clock which is synchronized by use of DCF 77. Time and
date are displayed on an LCD. Synchronization takes place after program start and then daily at a
time determined in the program (Update_Hour, Update_Minute). There are two libraries used:
DCF_Lib.cc and LCD_Lib.cc.

For the radio reception of the time signal a DCF 77 receiver is necessary. The output of the DCF
receiver is connected to the input port (Mega32: PortD.7 - M128: PortF.0). At first the beginning of a
time information has to be found. It will be synchronized onto the pulse gap (bit 59). Following the bit
will be received in seconds time. There will be a parity check after the minute and hour information
and also at the end of the transmission. The result of the parity check will be stored in DCF_ARRAY
[6]. For transfer of the time information DCF_ARRAY[0..6] will be used. After reception of a valid time
information the RTC will be set with this new time and will then run independently. RTC as well as
DCF 77 decoding is controlled by a 10ms interrupt. This time base is derived from the quartz
frequency of the Controller. DCF_Mode will control the completion of the DCF 77 time reception.

Table DCF Modes

DCF_Mode Description

No DCF 77 operation

Find pulse

Synchronization on frame start
Decode and store data. Parity check

wWIN |~ |[O

RTC (Real Time Clock)

The RTC is controlled by a 10ms interrupt and runs in the background independent of the user
program. The display on the LCD is updated every second. The display format is in the first line:
Hour : Minute : Second, in the second line: Date of Day : Month : Year.

LED1 flashes once per second.

After program start the RTC begins with the set time. The date is set to zero and thus indicates that
no DCF time adjustment has yet taken place. After reception of the DCF time the RTC is updated
with the current data. The RTC is not backed up by a battery, i. e. the clock time will not be updated
if there is no power applied to the Controller.

DCF_FRAME

DCF Functions

Syntax
voi d DCF_FRAME(voi d);

Sub DCF_FRAME()

© 2011 Conrad Electronic

Libraries 171

Description
Set DCF Mode to 3 ("data decode and save, parity check").
Parameter

None

6.7.2 DCF_INIT

DCF Functions

Syntax
void DCF_I NI T(voi d);

Sub DCF_I NI T()

Description

DCF_INIT initializes DCF usage. The input of the DCF signal is adjusted. DCF Mode is setto 0.
Parameter

None

6.7.3 DCF_PULS

DCF Functions

Syntax
voi d DCF_PULS(voi d);

Sub DCF_PULS()

Description
Set DCF_Mode to 1 ("look for pulse").
Parameter

None

© 2011 Conrad Electronic

172 C-Control Pro Mega Series

6.7.4 DCF_START

DCF Functions

Syntax
voi d DCF_START(voi d);

Sub DCF_START()

Description

DCF_START initializes all variables and sets DCF_Mode to 1. From now on DCF time recording is
working automatically.

Parameter

None

6.7.5 DCF_SYNC

DCF Functions

Syntax
voi d DCF_SYNC(voi d);

Sub DCF_SYNC()

Description
Set DCE_Mode to 2 ("synchronize for frame beginning").
Parameter

None

6.8 Debug

The Debug Message Functions allow to send formatted text to the output window of the IDE. These
functions are interrupt driven with a buffer of up to 128 Byte. I. e. 128 Byte can be transferred through
the debug interface without the Mega 32 or Mega 128 Module having to wait for completion of the
output. The transmission of the individual characters takes place in the background. If it is tried to
send more than 128 Byte then the Mega RISC CPU will have to wait until all characters not fitting

© 2011 Conrad Electronic

Libraries 173

into the buffer anymore have been transferred.

6.8.1 Msg_WriteChar

Debug Message Functions

Syntax
void Msg_WiteChar(char c);

Sub Msg_WiteChar(c As Char);

Description

One character is written to the output window. A C/R (Carriage Return - Value:13) generates a jump to the
nextline (linefeed).

Parameter

¢ output character

6.8.2 Msg_WriteFloat

Debug Message Functions

Syntax
void Msg WiteFloat(float val);

Sub Msg_WiteFloat(val As Single)

Description
The passed floating point number is displayed with a preceding decimal sign.
Parameter

val floatvalue

6.8.3 Msg_WriteHex

Debug Message Functions

Syntax
void Msg WiteHex(word val);

Sub Msg WiteHex(val As Word)

© 2011 Conrad Electronic

174 C-Control Pro Mega Series

Description

The 16bit value is displayed in the output window. The Output is formatted as a hexadecimal value with 4
digits. Leading zeros are displayed.

Parameter

val 16bitinteger value

6.8.4 Msg_Writelnt

Debug Message Functions

Syntax
void Msg_Witelnt(int val);

Sub Msg_Witelnt(val As Integer)

Description

The passed 16bit value is display in the output window. Negative values are displayed with a preceding
minus sign.

Parameter

val 16bitinteger value

6.8.5 Msg_WriteText

Debug Message Functions

Syntax
void Msg WiteText(char text[]);

Sub Msg_WiteText (ByRef text As Char)

Description
All characters of a character array up to the terminating null are sent to the output window.
Parameter

text pointer to char array

© 2011 Conrad Electronic

Libraries 175

6.8.6 Msg_WriteWord

Debug Message Functions

Syntax
void Msg WiteWrd(word val);

Sub Msg_WiteWrd(val As Wrd)

Description
The parameter val is written to the output windows as an unsigned decimal number.
Parameter

val 16bitunsigned integer value

6.9 Direct Access

The Direct Access functions allow direct access to all registers of the Atmel processor. The Register
numbers of the Atmel MEGA32 and Megal28 processors can be found in the Reference manual in
the chapter "Register Summary".

=» Caution! A careless reading or writing access to a register can strongly affect the functionality

of all library functions. Only someone who knows what he does, should use the Direct Access
functions!

6.9.1 DirAcc_Read

Direct Access Functions

Syntax

byte DirAcc_Read(byte register);

Sub DirAcc_Read(register As Byte) As Byte

Description

AByte is read from a Register of the Atmel CPU.

Parameter

register Register number (refer to chapter "Register Summary" in the Atmel Reference Manual)

Return Parameter

© 2011 Conrad Electronic

176

C-Control Pro Mega Series

6.9.2

6.10

6.10.1

Value of Register

DirAcc_Write

Direct Access Functions

Syntax
void DirAcc_Wite(byte register, byte val);

Sub DirAcc_Wite(register As Byte, val As Byte)

Description
AByte value is written into a Register of the Atmel CPU.
Parameter

register Register number (refer to chapter "Register Summary" in the Atmel Reference Manual)
val Byte value

EEPROM

The C-Control Pro Modules integrate M32:1kB resp. M128:4kB EEPROM. These library functions
allow access to the EEPROM of the Interpreter. 32 Bytes of the EEPROM area are used for internal
tasks and are thus not accessible.

EEPROM_Read

EEPROM Functions

Syntax
byt e EEPROM Read(word pos);

Sub EEPROM Read(pos As Wrd) As Byte

Description

Reads one byte out of the EEPROM at position pos. The first 32 byte are reserved for the OS of C-Control
Pro. Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and upwards.

Parameter
pos byte position in EEPROM

Return Parameter

© 2011 Conrad Electronic

Libraries 177

EEPROM value

6.10.2 EEPROM_ReadWord

EEPROM Functions

Syntax
word EEPROM ReadWor d(word pos);

Sub EEPROM ReadWor d(pos As Wrd) As Wrd

Description

Reads one word out of the EEPROM at position pos. The first 32 byte are reserved for the OS of C-Control
Pro. Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and upwards.
The value of pos describes a byte position in the EEPROM. This should be taken care of when using word
or floating point accesses.

Parameter

pos byte position in EEPROM

Return Parameter

EEPROM value

6.10.3 EEPROM_ReadFloat

EEPROM Functions

Syntax
fl oat EEPROM ReadFl oat (word pos);

Sub EEPROM ReadFl oat (pos As Word) As Single

Description

Reads a floating point value out of the EEPROM at position pos. The first 32 byte are reserved for the OS of
C-Control Pro. Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and
upwards. The value of pos describes a byte position in the EEPROM. This should be taken care of when
using word or floating point accesses.

Parameter

pos byte position in EEPROM

© 2011 Conrad Electronic

178

C-Control Pro Mega Series

6.10.4

6.10.5

Return Parameter

EEPROM value

EEPROM_Write

EEPROM Functions

Syntax
void EEPROM Wite(word pos, byte val);

Sub EEPROM Wite(pos As Wrd, val As Byte)

Description

Writes one byte into the EEPROM at position pos. The first 32 byte are reserved for the OS of C-Control Pro.
Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and upwards.

Parameter

pos byte position in EEPROM
val new EEPROM value

EEPROM_WriteWord

EEPROM Functions

Syntax
voi d EEPROM W iteWrd(word pos,word val);

Sub EEPROM W iteWrd(pos As Word, val As Word)

Description

Writes one word into the EEPROM at position pos. The first 32 byte are reserved for the OS of C-Control
Pro. Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and upwards.
The value of pos describes a byte position in the EEPROM. This should be taken care of when using word
or floating point accesses.

Parameter
pos byte position in EEPROM
val new EEPROM value

© 2011 Conrad Electronic

Libraries 179

6.10.6

6.11

6.11.1

EEPROM_WriteFloat

EEPROM Functions

Syntax
voi d EEPROM Wit eFl oat (word pos, fl oat val);

Sub EEPROM Wit eFl oat (pos As Word, val As Single)

Description

Writes a floating point value into the EEPROM at position pos. The first 32 byte are reserved for the OS of
C-Control Pro. Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and
upwards. The value of pos describes a byte position in the EEPROM. This should be taken care of when
using word or floating point accesses.

Parameter

pos byte position in EEPROM
val new EEPROM value

12C

The Controller provides an [2C Logic which allows effective communication. The Controller
operates as an 12C Master (single master system). A slave operating mode is possible
but not yet implemented in the current version.

12C_Init

12C Functions Example

Syntax
void 12C Init(byte | 2C BR);

Sub 12C Init(12C BR As Byte)

Description

This function initializes the 12C interface.

Parameter

I2C BR describes the baud rate. The following values are predefined:

1 2C_100kHz
I 2C_400kHz

© 2011 Conrad Electronic

180 C-Control Pro Mega Series

6.11.2 12C_Read_ACK

I2C Functions

Syntax
byte |2C_Read_ACK(void);

Sub 12C Read ACK() As Byte

Description

This function receives a byte and acknowledges with ACK. Afterwards the status of the interface can be
returned with I2C_ Status().

Return Parameter

value read from the 12C bus

6.11.3 [2C_Read NACK

12C Functions Example

Syntax
byte | 2C_Read_NACK(voi d);

Sub 12C Read NACK() As Byte

Description

This function receives a byte and acknowledges with NACK. Afterwards the status of the interface can be
returned with 12C_ Status().

Return Parameter

value read from the 12C bus

6.11.4 [2C_Start

I2C Functions Example

Syntax
void |12C Start(void);

Sub 12C _Start()

© 2011 Conrad Electronic

Libraries 181

Description

This function introduces communication with a starting sequence. Afterwards the status of the interface
can be returned with 12C_Status().

Parameter

None

6.11.5 12C_Status

I2C Functions

Syntax
byte |12C _Status(void);

Sub 12C_Status()

Description

With 12C_Status the status of the 12C interface can be accessed. For the meaning of the return value
please look inside the |12C status code table.

Return Parameter

current 12C Status

6.11.6 12C_Stop

12C Functions Example

Syntax
void |12C _Stop(void);

Sub 12C_Stop()

Description

This function ceases the 12C communication with a stop sequence. Afterwards the status of the interface
can be returned with |12C_ Status().

Parameter

None

© 2011 Conrad Electronic

182

C-Control Pro Mega Series

6.11.7

6.11.8

I2C_Write
I2C Functions Example

Syntax
void 12C Wite(byte data);

Sub 12C Wite(data As Byte)

Description

12C_Write() sends a byte to the 12C bus. Afterwards the status of the interface can be returned with
12C Status().

Parameter

data data byte

I2C Status Table

Table: Status Codes Master Transmitter Mode

Status Code Description
0x08 a START sequence has been sent
0x10 a "repeated” START sequence has been sent
0x18 SLA+W has been sent, ACK has been received
0x20 SLA+W has been sent, NACK has been received
0x28 Data byte has been sent, ACK has been received
0x30 Data byte has been sent, NACK has been received
0x38 conflict with SLA+W or data bytes

Table: Status Codes Master Receiver Mode

Status Code Description
0x08 a START sequence has been sent
0x10 a "repeated” START sequence has been sent
0x38 conflict with SLA+R or data bytes

© 2011 Conrad Electronic

Libraries 183

0x40 SLA+R has been sent, ACK has been received
0x48 SLA+R has been sent, NACK has been received
0x50 Data byte has been sent, ACK has been received
0x58 Data byte has been sent, NACK has been received

6.11.9 12C Example

Example: read EEPROM 24C64 and write without I12C_Status check
/1 12C Initialization, Bit Rate 100kHz

mai n(voi d)
{
wor d addr ess;
byt e dat a, EEPROM dat a;

addr ess=0x20;
dat a=0x42;

12C Init(12C_100kHz);
/1 wite data to 24C64 (8k x 8) EEPROM

1 2C Start();

| 2C_Wite(0xA0); /1 DEVI CE ADDRESS : A0
| 2C_ Wite(address>>8); /1 H GH WORD ADDRESS

1 2C_ Wite(address); /1 LOW WORD ADDRESS
12C Wite(data); /1l write Data

12C _Stop();

AbsDel ay(5); /'l delay for EEPROM Wite Cycle
/'l read data from 24C64 (8k x 8) EEPROM

1 2C Start();

| 2C_Wite(0xA0); /| DEVI CE ADDRESS : A0
| 2C_Wite(address>>8); /1 H GH WORD ADDRESS

| 2C_Wite(address); /1 LOW WORD ADDRESS

1 2C Start(); /'l RESTART

| 2C Wite(0xAl); /1 DEVI CE ADDRESS : Al
EEPROM dat a=1 2C_Read_NACK() ;

1 2C _Stop();

Msg Wit eHex(EEPROM dat a) ;

6.12 Interrupt

The Controller provides a multitude of interrupts. Some of them are used for system functions and
are thus not available to the user. The following interrupts can be utilized by the user.

Table: Interrupts

© 2011 Conrad Electronic

184

C-Control Pro Mega Series

6.12.1

Interrupt Name

Description

INT_O external InterruptO

INT 1 external Interruptl

INT_2 external Interrupt2

INT_3 external Interrupt3 (only Megal28)
INT 4 external Interrupt4 (only Megal28)
INT_5 external Interrupt5 (only Megal28)
INT_6 external Interrupt6 (only Megal28)
INT_7 external Interrupt?7 (only Megal28)
INT_TIM1CAPT Timerl Capture

INT_TIM1CMPA Timerl CompareA
INT_TIMICMPB Timerl CompareB

INT_TIM1OVF Timerl Overflow

INT_TIMOCOMP Timer0 Compare

INT_TIMOOVF Timer0 Overflow

INT_ANA_COMP

Analog Comparator

INT_ADC ADC

INT_TIM2COMP Timer2 Compare

INT_TIM20OVF Timer2 Owerflow

INT_TIM3CAPT Timer3 Capture (only Megal28)
INT_TIM3CMPA Timer3 CompareA (only Megal28)
INT_TIM3CMPB Timer3 CompareB (only Megal28)
INT_TIM3CMPC Timer3 CompareC (only Megal28)
INT_TIM3OVF Timer3 Owerflow (only Megal28)

The corresponding interrupt has to receive the corresponding instructions in an Interrupt Senice
Routine (ISR) and also the interrupt has to be enabled. See Example. During execution of the interrupt

routine the Multi Threading is suspended.

= A signal on INT_O can interfere with the Autostart Behaviour when the C-Control Pro Module is
switched on. According to the pin assignment of M32 and M128 INT_O shares the same pin with
SW1. If SW1 is pressed during power up of the Module then the Bootloader Mode will be activated
and the program will not be automatically started.

Ext_IntEnable

Interrupt Functions

Syntax

voi d Ext_IntEnabl e(byte | RQ byte Mde);

Sub Ext_I nt Enabl e(| RQ As Byte, Mode As Byte)

Description

© 2011 Conrad Electronic

Libraries 185

This function enables the external Interrupt IRQ. The Mode parameter defines when to trigger the interrupt.
Caution: Asignal on INT_O at power up time can lead to Autostart problems.

=% The IRQ parameter is defined between 0 and 2 for the Mega32 and between 0 and 7 for the Mega128.
Please do not mistake with the irgnr parameter of Irg_ SetVect().

=¥ The IRQ2 of Mega32 can onlywork edge triggered. See the different Mode parameter.
Parameter

IRQ number of the interrupt to be enabled
Mode parameter:

a low level triggers the interrupt

every changing edge triggers the interrupt
a falling edge triggers the interrupt
arising edge triggers the interrupt

Mode parameter for Mega32 and IRQ2:

0: afalling edge triggers the interrupt
1: arising edge triggers the interrupt

6.12.2 Ext_IntDisable

Interrupt Functions

Syntax
voi d Ext_IntDi sabl e(byte | RQ;

Sub Ext _I nt Di sabl e(1 RQ As Byte)

Description

The external Interrupt IRQ gets disabled.
Parameter

IRQ number of the interrupt to disable

6.12.3 Irq_GetCount

Interrupt Functions Example

Syntax
byte Irq_Get Count (byte irqnr);

Sub Irqg_GetCount(irqnr As Byte) As Byte

© 2011 Conrad Electronic

186

C-Control Pro Mega Series

6.12.4

6.12.5

Description

Acknowledges the interrupt. If the function is not called at the end of a interrupt service routine, the
interrupt service routine gets called continuously.

Parameter

i rgnr specifies the interrupt type (see table)

Return Parameter

The return value expresses how often a interrupt got triggered until the function Irg_GetCount() has been

called. Avalue greater 1 shows that the interrupts
are triggered more rapidly than the interrupt service routine is processed.

Irg_SetVect

Interrupt Functions Example

Syntax
void Irqg_SetVect(byte irgnr,dword vect);

Sub Irq_SetVect(irgnr As Byte,vect As ULong)

Description

Defines an interrupt service routine for a specified interrupt. At the end of the interrupt service routine the
function Irg_GetCount() has to be called, otherwise the interrupt service routine gets called continuously. A
vect of value Null sets the interrupt inactive again.

Parameter

i rgnr specifies the interrupt type (see table)
vect is the name of the interrupt function to be called

IRQ Example

Example: Usage of Interrupt Routines

/1 normally Timer 2 is called every 10nms. In this exanple the variable
/1l cnt gets increased by one every 10ns

int cnt;

voi d | SR(voi d)

© 2011 Conrad Electronic

Libraries 187

{
int irqgcnt;
cnt =cnt +1;
i rqcnt =Irq_Get Count (I NT_TI M2COWP) ;
}
voi d mai n(voi d)
{
cnt =0;
I rq_Set Vect (I NT_TI MCOWP, | SR) ;
while(true); [// endless |oop
}

6.13 Keyboard

One part of these keyboard routines is implemented in the Interpreter, another can be called up after
appending library "LCD_Lib.cc". Since the functions in

"LCD_Lib.cc" are realized through Bytecode they are slower when executed. Library functions
howewver have the advantage that they can be taken from the project by omitting the library in case
they are not needed. Direct Interpreter functions are always present, will however take up flash
memory.

6.13.1 Key_lInit

Keyboard Functions (Library "Key Lib.cc")

Syntax
void Key_lnit(void);

Sub Key_Init()

Description

The global keymap array gets initialized with the ASCII values of the keyboard.
Parameter

None

6.13.2 Key_Scan

Keyboard Functions

Syntax

word Key_Scan(void);

© 2011 Conrad Electronic

188 C-Control Pro Mega Series

Sub Key_Scan() As Word

Description

Key_Scan scans sequentially the input pins of the connected keyboard and returns the result as a bit field
with 16 bits. Bits that are setrepresent keys that have been pressed during the scan.

Return Parameter

16 bits that represent the input lines of the keyboard

6.13.3 Key_TranslateKey

Keyboard Functions (Library "Key Lib.cc")

Syntax
char Key_Transl at eKey(word keys);

Sub Key_Transl at eKey(keys As Word) As Char

Description

This help function looks for the first "1" in the bit field, and returns the
ASCIl value of the corresponding key.

Parameter
keys bitfield value that has been retuned from Key_Scan()
Return Parameter

ASCIl value of recognized keys
-lifno keyis pressed

6.14 LCD

A part of these routines is implemented in the Interpreter, another part can be called up by
appending library "LCD_Lib.cc". Since the functions in "LCD_Lib.cc" are realized through Bytecode
they are slower when executed. Library functions however have the advantage that they can be taken
from the project by omitting the library in case they are not needed. Direct Interpreter functions are
always present, will however take up flash memory.

6.14.1 LCD_ClearLCD

LCD Functions (Library"LCD_Lib.cc")

Syntax

© 2011 Conrad Electronic

Libraries 189

void LCD _Cl earLCD(voi d);

Sub LCD_Cl ear LCIX)

Description
Clears the display and enables the Cursor.
Parameter

None

6.14.2 LCD_CursorOff

LCD Functions (Library"LCD_Lib.cc")

Syntax
void LCD CursorOff(void);

Sub LCD_Cursor O f ()

Description
Turns the cursor off on the display.
Parameter

None

6.14.3 LCD_CursorOn

LCD Functions (Library"LCD_Lib.cc")

Syntax
voi d LCD_CursorOn(voi d);

Sub LCD_Cursor On()

Description
Turns the cursor in the displayon.
Parameter

None

© 2011 Conrad Electronic

190 C-Control Pro Mega Series

6.14.4 LCD_CursorPos

LCD Functions (Library"LCD_Lib.cc")

Syntax
voi d LCD _CursorPos(byte pos);

Sub LCD_Cursor Pos(pos As Byte)

Description
Moves the cursor to position pos.
Parameter

pos cursorposition

Value of pos Position on Display
0x00-0x07 0-7 on 1stline
0x40-0x47 0-7 on 2nd line

The following table is valid for displays with more than 2 lines and up to 32 chars per line:

Value of pos Position on Display
0x00-0x1f 0-31onlinel
0x40-0x5f 0-31online 2
0x20-0x3f 0-31online 3
0x60-0x6f 0-31online 4

6.14.5 LCD_lInit

LCD Functions (Library"LCD_Lib.cc")

Syntax
void LCD_Init(void);

Sub LCD_Init()

Description

© 2011 Conrad Electronic

Libraries 191

High level intialization of the LCD display. Calls LCD InitDisplay() as first.
Parameter

None

6.14.6 LCD_Locate
LCD Functions

Syntax
void LCD Locate(int row, int columm);

Sub LCD_Locate(row As Integer, colum As |nteger)

Description
Sets the cursor of the LCD displayto given row and column.
Parameter

row
column

6.14.7 LCD_Sublnit

LCD Functions

Syntax
voi d LCD_Subl nit(void);

Sub LCD_Subl nit()

Description

Initializes the display ports on assembler level. Must be called before all other LCD output functions. This
function will be used as first command from LCD_Init().

Parameter

None

© 2011 Conrad Electronic

192 C-Control Pro Mega Series

6.14.8 LCD_TestBusy

LCD Functions

Syntax
voi d LCD Test Busy(void);

Sub LCD Test Busy()

Description

This function waits for a non-busy of the display controller. If the controller is accessed in his busy period
the output data will be corrupted.

Parameter

None

6.14.9 LCD_WriteChar

LCD Runctions (Library"LCD_Lib.cc")

Syntax
void LCD_WiteChar(char c);

Sub LCD_WiteChar(c As Char)

Description
Displays one character at the cursor position on the LCD display.
Parameter

¢ ASCIl value of output character

6.14.10 LCD_WriteCTRRegister

LCD Functions (Library"LCD_Lib.cc")

Syntax
void LCD WiteCTRRegi ster(byte cmd);

Sub LCD WiteCTRRegi ster(cnd As Byte)

Description

© 2011 Conrad Electronic

Libraries 193

Sends a command to the display controller.
Parameter

cmd byte command

6.14.11 LCD_WriteDataRegister

LCD Functions (Library"LCD_Lib.cc")

Syntax
void LCD_WiteDataRegi ster(char x);

Sub LCD Wi teDataRegister(x As Char)

Description
Sends a data byte to the display controller.
Parameter

x data byte

6.14.12 LCD_WriteFloat

LCD Functions

Syntax
void LCD WiteFloat(float value, byte |ength);

Sub LCD WiteFloat(value As Single, |length As Byte)

Description
Writes a floating point value with given length to LCD display.
Parameter

value floating pointvalue
length output length

© 2011 Conrad Electronic

194 C-Control Pro Mega Series

6.14.13 LCD_WriteRegister

LCD Functions

Syntax
void LCD _WiteRegister(byte y, byte x);

Sub LCD WiteRegister(y As Byte,x As Byte)

Description

LCD_WiteRegister divides the data byte y in 2 nibbles (4bit values) and
sends the nibbles to the display controller.

y data byte
x command nibble

6.14.14 LCD_WriteText

LCD Functions (Library"LCD_Lib.cc")

Syntax
void LCD_WiteText(char text[]);

Sub LCD WiteText(ByRef Text As Char)

Description
All characters of the char array up to the terminating zero are displayed.
Parameter

text char array

6.14.15 LCD_WriteWord

LCD Functions

Syntax
void LCD_ Witewrd(word val ue, byte | ength);

Sub LCD_WiteWrd(value As Wrd, length As Byte)

Description

© 2011 Conrad Electronic

Libraries 195

Writes an unsigned integer (word) with given length to the LCD display. If the resulting LCD output is
smaller than the given length, the output filled with zeros "0" at the beginning.

Parameter

value word value
length output length

6.15 Math
Mathematical Functions.
6.15.1 Floating Point

In the following the mathematical functions are listed which the C-Control Pro 128 is able to master
with single floating point accuracy (32 bit). These functions are not contained in the C-Control Pro 32
since it would then not offer enough memory for user programs.

6.15.1.1 acos

Hoating Point Functions

Syntax
fl oat acos(float val);

Sub acos(val As Single) As Single

Description

The mathematical arc cosine (inverse cosine) is calculated.
Parameter

val inputvalue between -1 and 1

Return Parameter

arc cosine of the input value in the range [0..Pi], expressed in radians

6.15.1.2 asin

Hoating Point Functions

Syntax

float asin(float val);

© 2011 Conrad Electronic

196

C-Control Pro Mega Series

Sub asin(val As Single) As Single

Description

The mathematical arc sine (inverse sine) is calculated.
Parameter

val inputvalue between -1 and 1

Return Parameter

arc sine of the input value in the range [-Pi/2..Pi/2], expressed in radians

6.15.1.3 atan

Hoating Point Functions

Syntax
float atan(float val);

Sub atan(val As Single) As Single

Description

The mathematical arc tangent (inverse tangent) is calculated.
Parameter

val inputvalue

Return Parameter

arc tangent of the input value in the range [-Pi/2..Pi/2], expressed in radians

6.15.1.4 ceil

Hoating Point Functions

Syntax
float ceil (float val);

Sub ceil (val As Single) As Single

Description

The largestinteger value of the floating point number xis calculated.

© 2011 Conrad Electronic

Libraries 197

Parameter
val inputvalue
Return Parameter

result

6.15.1.5 cos

Hoating Point Functions

Syntax
float cos(float val);

Sub cos(val As Single) As Single

Description

The mathematical cosine is calculated.
Parameter

val inputangle expressed in radians
Return Parameter

cosine of the input value between -1 and 1

6.15.1.6 exp

Hoating Point Functions

Syntax
float exp(float val);

Sub exp(val As Single) As Single

Description

The exponential function e ~val is calculated.
Parameter

val exponent

Return Parameter

© 2011 Conrad Electronic

198

C-Control Pro Mega Series

result

6.15.1.7 fabs

Hoating Point Functions

Syntax
float fabs(float val);

Sub fabs(val As Single) As Single

Description

The absolute value of the floating point number val is calculated.
Parameter

val inputvalue

Return Parameter

result

6.15.1.8 floor

Hoating Point Functions

Syntax
float floor(float val);

Sub floor(val As Single) As Single

Description

The smallestinteger value of the floating point number xis calculated.

Parameter
val inputvalue
Return Parameter

result

© 2011 Conrad Electronic

Libraries 199

6.15.1.9 Idexp

Hoating Point Functions

Syntax
float |dexp(float val,int expn);

Sub | dexp(val As Single,expn As Integer) As Single

Description

The function val * 2 » expn is calculated (also used as internal help function for other mathematical
functions).

Parameter

val multiplier

expn exponent
Return Parameter

result

6.15.1.10 In

Hoating Point Functions

Syntax
float I n(float val);

Sub I n(val As Single) As Single

Description

The natural logarithm is calculated.
Parameter

val inputvalue

Return Parameter

result

6.15.1.11 log

Hoating Point Functions

Syntax

© 2011 Conrad Electronic

200 C-Control Pro Mega Series

float log(float val);

Sub log(val As Single) As Single

Description

The logarithm base 10 is calculated.
Parameter

val inputvalue

Return Parameter

result

6.15.1.12 pow

Hoating Point Functions

Syntax
float pow(float x,float y);

Sub powm(x As Single,y As Single) As Single

Description
The power function x*yis calculated.
Parameter

X base
y exponent

Return Parameter

result

6.15.1.13 round

Hoating Point Functions

Syntax
float round(float val);

Sub round(val As Single) As Single

Description

© 2011 Conrad Electronic

Libraries 201

Rounding function. The floating point value is rounded up or down to a number without decimal places.
Parameter

val inputvalue

Return Parameter

result of the function

6.15.1.14 sin

Hoating Point Functions

Syntax
float sin(float val);

Sub sin(val As Single) As Single

Description

The mathematical sine is calculated.
Parameter

val inputangle expressed in radians
Return Parameter

sine of the input value between -1 and 1

6.15.1.15 sqrt

Hoating Point Functions

Syntax
float sqgrt(float val);

Sub sqrt(val As Single) As Single

Description

The square root of a positive floating point number is calculated.
Parameter

val inputvalue

Return Parameter

© 2011 Conrad Electronic

202 C-Control Pro Mega Series

result

6.15.1.16 tan

Hoating Point Functions

Syntax
float tan(float val);

Sub tan(val As Single) As Single

Description

The mathematical tangentis calculated.
Parameter

val inputangle expressed in radians
Return Parameter

tangent of the input value
6.15.2 Integer
Mathematical Integer Functions.

6.15.2.1 rand

Integer Functions

Syntax
int rand(void);

Sub rand() As Integer

Description

This function returns a pseudo random number between 0 and 32768. Use srand() with different seeds for
varying sequences of numbers.

Return Parameter

Pseudo Random Number

© 2011 Conrad Electronic

Libraries 203

6.15.2.2 srand

Integer Functions

Syntax
voi d srand(int seed);

Sub srand(seed As | nteger)

Description

Sets the seed for the pseudo random number generator. With the same seed the pseudo random
number sequences can be reproduced.

Parameter

seed pseudorandom number generator starting value.

6.16 OneWire

1-Wire or One-Wire is a serial interface that needs only one wire for signaling and power. The data is
transferred asynchronously (without clock signal) in groups of 64 bit. Data can either be sent or
received, but not at the same time (half-duplex).

The special about 1-Wire devices is the parasitically power supply, that is made over the signal wire:
When there is no communication, the signal wire has a +5V level and charges a capacitor. During
low-pulse communication the slave device is powered from his capacitor. Dependent on the charge
of the capacitor, low-time gaps up to 960 us can be bridged.

6.16.1 Onewire_Read

1-Wire Functions

Syntax
byt e Onew re_Read(void);

Sub Onewire_Read() As Byte

Description
AByte is read from the One-Wire Bus.
Return Parameter

value read from One-Wire Bus

© 2011 Conrad Electronic

204

C-Control Pro Mega Series

6.16.2

Onewire_Reset

1-Wire Functions

Syntax

voi d Onewire_Reset (byte porthit);

Sub Onewi re_Reset (portbit As Byt e)

Description

A reset is made on the One-Wire Bus. The port bit number for the One-Wire Bus communication is

specified.
Parameter

portbit portbitnumber (see table)

Portbits Table

Definition Portbit
PortA.0 0
PortA.7 7
PortB.0 8
PortB.7 15
PortC.0 16
PortC.7 23
PortD.0 24
PortD.7 31

from here only Megal28
PortE.O 32
PortE.7 39
PortF.0 40
PortF.7 47
PortG.0 48
PortG.4 52

© 2011 Conrad Electronic

Libraries

6.16.3 Onewire_Write

1-Wire Functions

205

Syntax
void Onewire_Wite(byte data);

Sub Onewire_Wite(data As Byte)

Description
Abyte is written to the One-Wire Bus.
Parameter

data data byte

6.16.4 Onewire Example

CompactC

/1 Sanple Code to read DS18S20 tenperature sensor from Dallas Maxim

voi d mai n(voi d)
{
char text[40];
int ret, i;
byte rom code[8];
byte scratch_pad[9];

ret= OneWre_Reset(7); // PortA 7
if(ret == 0)
{

text= "no device found";

Msg WiteText(text);

goto end;

}

OneWre Wite(0Oxcc); // skip ROM cnd

OneWre Wite(0x44); // start tenperature nmeasure cnd

AbsDel ay(3000);

OneWre_Reset(7); /'l PortA 7
OneWre_Wite(Oxcc); // skip ROM cnd

OneWre_ Wite(Oxbe); // read scratch_pad cnd
for(i=0;i<9;i++) /'l read whol e scratchpad

{
scratch_pad[i]= OneWre_Read();

Msg_WiteHex(scratch_pad[i]);

© 2011 Conrad Electronic

206 C-Control Pro Mega Series

}
Msg WiteChar('\r');

text= "Tenperature: ";
Msg WiteText (text);

tenp= scratch_pad[1] *256 + scratch_pad[0];
Msg_WiteFl oat (tenp* 0.5);

Msg WiteChar('C);

Msg_WiteChar('\r');

end:

BASIC

Sanpl e Code to read DS18S20 tenperature sensor from Dallas Maxi m
Di m Text (40) As Char

Dimret,i As Integer

Dimtenp As |nteger

Dimromcode(8) As Byte

Dim scratch_pad(9) As Byte

Sub mai n()
ret = OneWre_Reset(7) ' PortA 7
If ret = 0 Then

Text= "no device found"
Msg WiteText(Text)

GoTo Ende
End | f
OneWre_Wite(0xcc) ' skip ROM cnd
OneWre Wite(0x44) ' start tenperature neasure cnd

AbsDel ay(3000)

OneWre_Reset (7) " PortA 7

OneWre_ Wite(0xcc) " skip ROM cnd
OneWre_Wite(0Oxbe) ' read scratch_pad cnd
For i = 0 To 9 " read whol e scratchpad

scratch_pad(i)= OneWre_Read()
Msg WiteHex(scratch_pad(i))
Next
Msg WiteChar(13)
Text = "Tenperature: "
Msg WiteText(Text)

tenp = scratch_pad(1l) * 256 + scratch_pad(0)

© 2011 Conrad Electronic

Libraries 207

6.17

6.17.1

Msg WiteFloat(tenp * 0.5)
Msg_W it eChar (99)
Msg_WiteChar (13)

Lab Ende
End Sub

Port

The Atmel Mega 32 provides 4 input/output ports at 8 bits each. The Atmel Mega 128 provides 6
input/output ports at 8 bits each and one input/output port at 5 bits. Each bit of the individual ports
can be configured as input or output. Since however the number of pins in the Mega 32 Risc CPU is
limited, additional functions are assigned to individual ports. A pin assignment table for M32 and
M128 can be found in the documentation.

=¥ |t is important to study the pin assignment prior to programming since important functions of the
program design (e. g. the USB Interface of the Application Board) are assigned to specific ports. If
these ports are programmed differently or the corresponding jumpers on the Application Board are no
longer set it may happen that the design interface is no longer able to transfer programs to the C-
Control Pro.

=» The direction of data flow (input/output) can be determined with function Port_DataDir or
Port_DataDirBit. If a pin is configured as input then this pin can either be operated high resistive
("floating™) or with an internal pull-up resistor. If with Port_Write or Port_WriteBit a "1" is written to an
input then the pull-up resistor (Reference Level VCC) is activated and the input is defined.

Port_DataDir

Port Functions Example

Syntax
void Port_DataDir(byte port, byte val);

Sub Port_DatabDir(port As Byte,val As Byte)

Description

The function Port_DataDir configures the port for input or output direction. Is a bit set, then the Pin
corresponding to the bit position is switched to output. Example: Is port = PortB and val = 0x02, then
PortB.1 is configured for output, all other ports on PortB are set to input (see Pin Assignment of M32
and M128).

Parameter

port portnumber (see table)

© 2011 Conrad Electronic

208

C-Control Pro Mega Series

6.17.2

val outputbyte

port number table

Definition

Value

PortA

PortB

PortC

PortD

PortE (Megal28)

PortF (Megal28)

PortG (Megal28)

o wWINI|F O

Port_DataDirBit

Port Functions

Syntax

void Port_DataDirBit(byte portbit, byte val);

Sub Port_DataDirBit(portbit As Byte,val As Byte)

Description

The function Port_DataDirBit configures one bit (Pin) of a port for input or output direction. Is a bit set, then
the Pin corresponding to the bit position is switched to output. Example: Is portbit = 10 and val = 0, then
PortB.2 is configured for input. All other ports on PortB stay the same (see Pin Assignment of M32

and M128).

=¥ Port Bit access is always significant slower than the normal Port access that transfers 8 Bit. If the

desired values of all Port Bits are known, 8-Bit Port access is always preferable.

Parameter

portbit port bitnumber (see table)

val O=Input, 1= Output

Portbits Table

Definition Portbit
PortA.0 0
PortA.7 7

© 2011 Conrad Electronic

Libraries 209

PortB.0 8
PortB.7 15
PortC.0 16
PortC.7 23
PortD.0 24
PortD.7 31
from here only Megal28
PortE.O 32
PortE.7 39
PortF.0 40
PortF.7 47
PortG.0 48
PortG.4 52

6.17.3 Port_Read

Port Functions

Syntax
byte Port_Read(byte port);

Sub Port_Read(port As Byte) As Byte

Description

Reads a byte from the specified port. Only the Pins of port that are configured for input return a valid value
on their bit position (see Pin Assignment of M32 and M128).

Parameter
port portnumber (see table)
Return Parameter

port byte value

port number table

Definition Value
PortA 0
PortB 1
PortC 2
PortD 3

© 2011 Conrad Electronic

210

C-Control Pro Mega Series

6.17.4

PortE (Megal28)

PortF (Megal28)

o o |~

PortG (Megal28)

Port_ReadBit

Port Functions

Syntax

byte Port_ReadBit(byte port);

Sub Port_ReadBit(port As Byte) As Byte

Description

The function Port_ReadBit reads the value of a Pin that is configured for input. (See Pin Assignment of

M32 and M128).

=¥ Port Bit access is always significant slower than the normal Port access that transfers 8 Bit. If the

desired values of all Port Bits are known, 8-Bit Port access is always preferable.

Parameter
portbit bit number of port (see table)
Return Parameter

bit value (0 or 1)

Portbits Table

Definition Portbit
PortA.0 0
PortA.7 7
PortB.0 8
PortB.7 15
PortC.0 16
PortC.7 23
PortD.0 24
PortD.7 31

from here only Megal28
PortE.O 32

© 2011 Conrad Electronic

Libraries 211

PortE.7 39
PortF.0 40
PortF.7 47
PortG.0 48
PortG.4 52

6.17.5 Port_Toggle

Port Functions

Syntax
voi d Port_Toggl e(byte port);

Sub Port_Toggl e(port As Byte)

Description

Inverts all Bits on the specified port. Only the Pins of port that are configured for output will show their value
as port output on their bit position (see Pin Assignment of M32 and M128). Is a Pin configured as input,
this will set an internal pull-up resistor on (bit = 1) or off (bit = 0). See Pin Assignment of M32 and
M128.

Parameter

port portnumber (see table)

port number table

Definition Value

PortA
PortB
PortC
PortD
PortE (Megal28)
PortF (Megal28)
PortG (Megal28)

o~ [WIN|F|O

6.17.6 Port_ToggleBit

Port Functions

Syntax

voi d Port_Toggl eBit(byte portbhit);

© 2011 Conrad Electronic

212 C-Control Pro Mega Series
Sub Port_Toggl eBit(porthit As Byte)
Description
The function Port_WriteBit inverts the value of a Pin that is configured for output. Is a Pin configured as
input, this will set an internal pull-up resistor on (bit = 1) or off (bit = 0). See Pin Assignment of M32
and M128.
=¥ Port Bit access is always significant slower than the normal Port access that transfers 8 Bit. If the
desired values of all Port Bits are known, 8-Bit Port access is always preferable.
Parameter
portbit bit number of port (see table)
Portbits Table
Definition Portbit
PortA.0 0
PortA.7 7
PortB.0 8
PortB.7 15
PortC.0 16
PortC.7 23
PortD.0 24
PortD.7 31
from here only Megal28
PortE.O 32
PortE.7 39
PortF.0 40
PortF.7 47
PortG.0 48
PortG.4 52
6.17.7 Port_Write

Port Functions Example

Syntax

void Port_Wite(byte port, byte val);

Sub Port_Wite(port As Byte,val As Byte)

© 2011 Conrad Electronic

Libraries 213

Description

Writes a byte to the specified port. Only the Pins of port that are configured for output will show their value
as port output on their bit position (see Pin Assignment of M32 and M128). Is a Pin configured as input,
this will set an internal pull-up resistor on (bit = 1) or off (bit = 0). See Pin Assignment of M32 and
M128.

Parameter

port portnumber (see table)
val output byte

port number table

Definition Value

PortA
PortB
PortC
PortD
PortE (Megal28)
PortF (Megal28)
PortG (Megal28)

o~ [WIN|F|O

6.17.8 Port_WriteBit

Port Functions

Syntax
void Port_WiteBit(byte porthit,byte val);

Sub Port_WiteBit(porthit As Byte,val As Byte)

Description

The function Port_WriteBit sets the value of a Pin that is configured for output. Is a Pin configured as
input, a Port_WriteBit() will set an internal pull-up resistor on (bit = 1) or off (bit = 0). See Pin
Assignment of M32 and M128.

Parameter

portbit bit number of port (see table)
val bit value (0 or 1)

© 2011 Conrad Electronic

214 C-Control Pro Mega Series
Portbits Table
Definition Portbit
PortA.0 0
PortA.7 7
PortB.0 8
PortB.7 15
PortC.0 16
PortC.7 23
PortD.0 24
PortD.7 31
from here only Megal28
Porte.O 32
Porte.7 39
PortF.0 40
PortF.7 47
PortG.0 48
PortG.4 52
6.17.9 Port Example

/1 Programtoggles the LED s on the applicationboard
[/l alternately every second

voi d nmai n(voi d)

Port Dat aDi r Bi t (PORT_LED1, PORT_QUT) ;
Port _Dat abDi r Bi t (PORT_LED2, PORT_QUT) ;

Port Wit eBit(PORT_LEDL, PORT_ON);
Port Wit eBit(PORT_LED2, PORT_OFF);

Port Wit eBit(PORT_LEDL, PORT_OFF);
Port Wit eBit(PORT_LED2, PORT_ON);

{
whil e(true) // endless |oop
{
AbsDel ay(1000);
AbsDel ay(1000);
}
}

© 2011 Conrad Electronic

Libraries 215

6.18 RC5

A common used standard protocol for infrared data communication is the RC5 code, originally
deweloped by Phillips. This code has an instruction set of 2048 different instructions and is divided
into 32 address of each 64 instructions. Every kind of equipment use his own address, so this
makes it possible to change the wlume of the TV without change the wlume of the hifi. The
transmitted code is a dataword wich consists of 14 bits.

Original protocol:

2 start bits for the automatic gain control in the infrared receiver

1 toggle bit (changes ewery time a new button is pressed on the IR transmitter)
5 address bits for the system address

6 instruction bits for the pressed key

The start bits help the IR receiver to synchronize and to adjust the automatic gain control of the
signal. The toggle bit changes its value with every keypress. Therefore it is possible to distinguish
the long press of a key with repeated presses of the same key. After a while there was a need to
extend the number of possible instructions from 64 to 128. To maintain compatibility the second
start bit was used for this purpose. If the second start bit is "1", the first 64 instructions can be
addressed, if the 2nd start bit is "0" the next 64 instructions can be selected.

How are the individual bits transferred?

The C-Control Pro generates a carrier frequency of 36Khz on the configured pin, that is connected to
the IR-Diode. All transmission pulses are 6,9444 long. There is a delay of 20,8332 us between two
pulses. For a "1" value, the frequency generation of the transmission is turned of for 889us, and then
turned on for 889us (this equals to 32 IR impulses). A value of "0" is created with a pause of 889us,
followed from a frequency generation of 889us. The time to transfer a whole bit is 1,778ms (2 *
889us) and to transfer a complete 14 bit dataword is 24,889ms. If akey on remote control is pressed
for a longer duration, the corresponding dataword is repeated every 113m778ms.

© 2011 Conrad Electronic

216

C-Control Pro Mega Series

Connection to C-Control Pro (Sender diode)

R1

<1/ Port |

330R

RLED N7

z.B. TSUS 5202

Connection to C-Control Pro (Receiver)

Source: VISHAY Datasheet

Vg Y OUT TSOP1736 IR-Receiver

Pin assignment of TSOP1736 IR-Receiver

© 2011 Conrad Electronic

Libraries 217

Input Control

Circuit

s, i

Vg

3OuUT

Band = e
AGC s Demodu I -

lator
I

Internal struture of receiver

© 2011 Conrad Electronic

218

C-Control Pro Mega Series

6.18.1

TSOP1736

+5VDC >

1/10 Port >

C1

4,7uF

+5VDC >

5%ZOK optional Pullup Resistor
Qut e o
R1
100R

External circuit of receiver for connection to C-Control Pro

RC5_Init

RC5 Functions

Syntax
void RC5_Init(byte pin);

Sub RC5_Init(pin As Byte)

Description

The port pin is defined, thatis connected to RC5 sender or receiver.

© 2011 Conrad Electronic

Libraries 219

Parameter

pin bit number of port (see table)

Portbits Table

Definition Portbit
PortA.0 0
PortA.7 7
PortB.0 8
PortB.7 15
PortC.0 16
PortC.7 23
PortD.0 24
PortD.7 31

from here only Megal28
PortE.O 32
PortE.7 39
PortF.0 40
PortF.7 47
PortG.0 48
PortG.4 52

6.18.2 RC5_Read

RC5 Functions

Syntax
word RC5_Read(void);

Sub RC5_Read() As Word

Description

Recognized RC5 datawords are received from the defined port pin. If there is no signal, the receive routine
waits up to 130ms. This is because there is a 113ms gap between two repeated RC5 datawords. A return
value of 0 means that no RC5 signal could be detected.

=¥ This function will not recognize if a different format than RC-5 is used. In case of doubt it will return
wrong values.

Return Parameter

© 2011 Conrad Electronic

220

C-Control Pro Mega Series

6.18.3

6.19

6.19.1

14 Bit of the received RC-5 commands

RC5_Write

RC5 Functions

Syntax
void RC5_Wite(word data);

Sub RC5_Wite(data As Wrd)

Description
The 14 bit of a RC5 dataword are send to the defined port pin.
Parameter

data recognized RC5 dataword

RS232

The serial interface can be operated at speeds of up to 230.4 kilo baud. With the functions for the
serial interface the first parameter will indicate the port number (0 or 1). The Mega32 does only
provide one serial interface (0), while the Megal28 does provide two interfaces (0, 1).

= There is a chance to miss received characters when using the polled serial routines, especially at
high baud rates. If this is an issue, please use the interrupt driven serial routines with Serial_Init_IRQ()
instead of Serial_Init().

Divider

The functions Serial_Init() and Serial_Init_IRQ get a divider value as baudrate parameter. The
baudrate is derived from the processor clock (14,7456 MHz for Mega32, Megal28 and 16 MHz for
Megal28 CAN).

According to the Atmel processor handbook the following formula is used to calculate the divider for
a specified baudrate:

© 2011 Conrad Electronic

Libraries 221

divider = (processor clock / baudrate / 16) -1
Example: 15 = (14745600 / 57600/ 16) -1

=» |t is difficult to obtain the standard baudrates from the 16 MHz processor clock of the Megal28
CAN. Therefore are differences at higher baudrates between both divider tables.

DoubleClock Mode

If the High-Bit of the divider is set, the DoubleClock Mode is enabled. In this mode the divider value
must be doubled. E.g. for 57600 baud a divider value of 0xOf (decimal 15) or 0x801e can be used.
For the MIDI baudrate (31250 baud) a divider of (14745600 / 31250/ 16) -1 = 28.49 had to be used.
If DoubleClock is enabled, the divider value can be specified more accurate: 0x8039

Table divider definition 14,7456 MHz (Mega32, Megal28):

divider definition baudrate
3071 SR BD300 300bps
1535 SR BD600 600bps
767 SR BD1200 1200bps
383 SR_BD2400 2400bps
191 SR_BD4800 4800bps
95 SR _BD9600 9600bps
63 SR _BD14400 14400bps
47 SR _BD19200 19200bps
31 SR BD28800 28800bps
0x8039 SR BDMIDI 31250bps
23 SR BD38400 38400bps
15 SR _BD57600 57600bps
11 SR BD76800 76800bps
7 SR BD115200 115200bps
3 SR _BD230400 230400bps

Table divider definition 16 MHz (Megal128 CAN):

divider definition baudrate
3332 SR BD300 300bps
1666 SR _BD600 600bps
832 SR BD1200 1200bps
416 SR BD2400 2400bps
207 SR BD4800 4800bps
103 SR BD9600 9600bps
68 SR BD14400 14400bps
51 SR BD19200 19200bps
34 SR BD28800 28800bps
31 SR BDMIDI 31250bps

© 2011 Conrad Electronic

222 C-Control Pro Mega Series
25 SR BD38400 38400bps
0x8022 SR BD57600 57600bps
12 SR BD76800 76800bps
6 SR BD125000 125000bps
3 SR BD250000 250000bps
6.19.2 Serial _Disable
Serial Functions
Syntax
voi d Serial _Di sabl e(byte serport);
Sub Seri al _Di sabl e(serport As Byte)
Description
The serial interface gets switched off and the corresponding ports can be used otherwise.
Parameter
serport interface number (0 = 1stserial port, 1 = 2nd serial port, ...)
6.19.3 Serial_Init

Serial Functions Example

Syntax

void Serial _Init(byte serport, byte par, byte divider);

Sub Serial _Init(serport As Byte, par As Byte, divider As Byte)

Description

The serial interface gets initialized. The parameter par is defined through successive or-ing of predefined
bit values. The values of character length, stop bits and parity are or'd together. E.g. "SR_7BIT | SR_2STOP
| SR_EVEN_PAR" means 7 bit character length, 2 stop bits and even parity (see Example). An example in
BASIC Syntax: "SR_7BIT Or SR_2STOP Or SR_EVEN_PAR". The baud rate is defined as a divider value
(see divider table).

= There is a chance to miss received characters when using the polled serial routines, especially at
high baud rates. If this is an issue, please use the interrupt driven serial routines with Serial_Init_IRQ()
instead of Serial_Init().

=¥ |tis possible to activate the DoubleClock Mode of the Atmel AVR. This happens if the Hi-bit of the
divider is set. In DoubleClock mode the normal value from the divider table must be doubled to get the
same baudrate. This has the advantage that baudrates, that have no exact divider value can be
represented. E.g. MIDI: The new value SB_MIDI (=0x803a) lies much nearer at the correct value of

© 2011 Conrad Electronic

Libraries 223

31250baud. An example for 19200 baud: The normal divider value for 19200 baud is O0x002f. If
DoubleClock Mode is used, the divider must be doubled (=0x005e). Then set the Hi-bit, and the alternative
divider value for 19200 baud is 0x805e.

Parameter
serport interface number (0 = 1st serial port, 1 = 2nd serial port, ...)

par interface parameter (see par table)
divider baud rate initialization (see table)

table par definitions:

Definition Function
SR 5BIT 5 Bit char length
SR 6BIT 6 Bit char length
SR 7BIT 7 Bit char length
SR 8BIT 8 Bit char length

SR 1STOP 1 stop bit

SR 2STOP 2 stop bit

SR NO PAR no parity
SR EVEN PAR even parity
SR ODD PAR odd parity

6.19.4 Serial_Init_IRQ

Serial Functions Example

Syntax
void Serial _Init_I RQbyte serport,byte ramaddr[], byte recvl en, byte sendl en, byte par

Sub Serial _Init_IRQ)(serport As Byte, ByRef ramaddr As Byte,recvlen As Byte, sendl en /
par As Byte,div As Byte)

Description

The serial interface gets initialized for usage in interrupt mode. The user has to provide a global variable
as a serial buffer. This buffer services as a storage for the data that is sent to the serial interface and is
received from it. The size of the buffer must be length of the send buffer plus the length of the receive
buffer plus 6 bytes (see Example).

The maximum value for the size of the send and the receive buffer is 255 bytes each. The parameter par is
defined through successive or-ing of predefined bit values. The values of character length, stop bits and
parity are or'd together. E.g. "SR_7BIT | SR_2STOP | SR_EVEN_PAR" means 7 bit character length, 2 stop
bits and even parity (see Example). An example in BASIC Syntax "SR_7BIT Or SR_2STOP Or
SR_EVEN_PAR". The baud rate is defined as a divider value (see divider table).

= The user supplied buffer must be available the whole time the serial interface is working. Since after

© 2011 Conrad Electronic

224

C-Control Pro Mega Series

leaving a function the local variables are no longer available, it is most times a good idea to provide the

user supplied buffer as a global variable.

=¥ |t is possible to activate the DoubleClock Mode of the Atmel AVR. This happens if the Hi-bit of the
divider is set. In DoubleClock mode the normal value from the divider table must be doubled to get the
same baudrate. This has the advantage that baudrates, that have no exact divider value can be
represented. E.g. MIDI: The new value SB_MIDI (=0x803a) lies much nearer at the correct value of
31250baud. An example for 19200 baud: The normal divider value for 19200 baud is 0x002f. If
DoubleClock Mode is used, the divider must be doubled (=0x005€). Then set the Hi-bit, and the alternative

divider value for 19200 baud is 0x805e.

=9 Please use Serial_ReadExi() if you work in serial IRQ mode. Serial_Read() only supports polled

mode.

Parameter

serport interface number (0 = 1stserial port, 1 = 2nd serial port, ...)

ramaddr address of the buffer

recvlen size of receive buffer

sendlen size of send buffer

par interface parameter (see par table)
divider baud rate initialization (see table)

table par definitions:

Definition Function
SR 5BIT 5 Bit char length
SR 6BIT 6 Bit char length
SR 7BIT 7 Bit char length
SR 8BIT 8 Bit char length
SR 1STOP 1 stop bit
SR 2STOP 2 stop bit
SR NO PAR no parity
SR EVEN PAR even parity
SR ODD PAR odd parity
6.19.5 Serial IRQ _Info
Serial Functions
Syntax
byte Serial _| RQ Info(byte serport, byte info);

Sub Serial _|RQ Info(serport As Byte, info As Byte) As Byte

Description

© 2011 Conrad Electronic

Libraries 225

In dependency of the info parameter the function returns how many bytes have been received or a written to
the send buffer.

Parameter
serport interface number (0 = 1st serial port, 1 = 2nd serial port)
info values:

RS232_HFO_RECV (0) number of bytes received
RS232_HFO_SEND(1) number of bytes written to he send buffer

Return Parameter

resultin bytes

6.19.6 Serial Read

Serial Functions

Syntax

byte Serial _Read(byte serport);

Sub Serial _Read(serport As Byte) As Byte

Description

Reads one byte from the serial interface. If is there is no byte available in the serial interface, the function
waits until a byte has been received.

= Please use Serial ReadExi() if you work in serial IRQ mode. Serial_Read() only supports polled
mode.

Parameter
serport interface number (0 = 1st serial port, 1 = 2nd serial port)
Return Parameter

received byte from the serial interface

6.19.7 Serial_ReadExt

Serial Functions

Syntax
word Serial _ReadExt (byte serport);

Sub Seri al _ReadExt (serport As Byte) As Wrd

© 2011 Conrad Electronic

226

C-Control Pro Mega Series

6.19.8

6.19.9

Description

Reads one byte from the serial interface. In opposite to Serial Read() Serial_ReadExt() returns
immediately even if there is no byte available in the serial port. In this case 256 (0x100) is returned.

= Please use Serial_ReadExi() if you work in serial IRQ mode. Serial_Read() only supports polled
mode.

Parameter
serport interface number (0 = 1st serial port, 1 = 2nd serial port)
Return Parameter

received byte from the serial interface
256 (0x100) if there was no byte available

Serial_Write

Serial Functions Example

Syntax
void Serial _Wite(byte serport, byte val);

Sub Serial _Wite(serport As Byte, val As Byte)

Description
One byte is send to the serial interface.
Parameter

serport interface number (0 = 1st serial port, 1 = 2nd serial port)
val output byte value

Serial_WriteText

Serial Functions

Syntax
voi d Serial _WiteText(byte serport,char text[]);

Sub Serial _WiteText(serport As Byte, ByRef Text As Char)

Description

All characters of the char array up to the terminating zero are send to the serial interface.

© 2011 Conrad Electronic

Libraries 227

Parameter

serport interface number (0 = 1stserial port, 1 = 2nd serial port)
text char array

6.19.10 Serial Example

/1 string output on the serial interface
voi d mai n(voi d)

{

int i;

char str[10];

str="test";

i =0;

/1l initialize serial port with 19200baud, 8 bit, 1 stop bit, no parity

Serial _Init(0,SR 8BIT| SR _1STOP| SR_NO_PAR, SR_BD19200) ;

while(str[i]) Serial _Wite(0,str[i++]); // output string to serial port
}

6.19.11 Serial Example (IRQ)

6.20

/1l 35 byte send + receive buffer + 6 byte internal FIFO organization
byte buffer[41]; /1 array declaration

/1 string output to serial interface
voi d mai n(voi d)

{
int i;
char str[10];
str="test";
i =0;
/1l initialize serial port with 19200baud, 8 bit, 1 stop bit, no parity
/1 20 byte receive buffer - 15 byte send buffer
Serial _Init_I RYO,buffer, 20, 15, SR 8Bl T| SR_1STOP| SR_NO_PAR, SR BD19200) ;
while(str[i]) Serial Wite(0,str[i++]); [/ display string
while(l); // endless |oop
}
SDCard

The C-Control Pro SD Card interface is used for connecting a microcontroller, such as C-Control Unit
128 Mega (Conrad Item no. 198 219) to a 3.3 SD card. The SD-card expansion features a lewel
converter, which bidirectional conwerts the signals, allowing a direct connection of the SD card to a
5V microcontroller. All memory cards, on the market this time, such as SD, SDHC, MMC and other

© 2011 Conrad Electronic

228

C-Control Pro Mega Series

cards can be used with a corresponding SD card adapter.

o C-Control PRO
—1 e
L1 e

O B

O

e
o o
T ocD
pe e s OMSs0
O MOSI
O sCK
o 0ss
=; e O
O LED
{EE OEN2
O +5V
O GND

)

an 800
2 S

0
=
e i
g
m
0

Card holder PIN Megal28
WP PE.5
CD PB.4
MISO PB.3
MOSI PB.2
SCK PB.1
SS PB.0
EN1 PB.5
LED PB.7
EN2 PB.6

WP (Write Protect):
high = write protected SD card
low = access allowed

CD (Card Detect):
high = SD-Card not recognized
low = SD-Card detected

SPI- Interface:
MISO

MOSI

SCK

SS

Other:
LED -> User Led (5V lewel)

Reset Circuit:

Enl = Reset the SD-Card (low = running mode / high = reset)

© 2011 Conrad Electronic

Libraries

En2 = Supply SD-Card holder (low = off / high = on)
The bottom diagram shows the performance of the hardware reset.

—p 4—min. 50ms

[

En1

--low

EnZ

Insert SD-Card:

The SD card must always be inserted that the contacts show towards the circuit board of the SD-

Card interface. An incorrect insertion of the SD-Card may damage the card holder.

Technical data:

Supply wltage: +5V/DC

Current consumption: max. 150mA
SPIl inputs and outputs: 5V lewvel (TTL)

Permissible ambient temperature: 0° C to +70 °C
Permissible ambient relative humidity: 20 - 80% RH, noncondensing

Dimensions: approx 53.5 x 42 x 4.5 mm
Weight: 109

6.20.1 SDC Return Values

All SDC Functions return a status Byte that describes the success of the SDC operation.

229

Error Value Description
FR OK 0 operation successful
FR DISK ERR 1 physical access failed
FR INT ERR 2 wrong FAT structure or internal error
FR _NOT READY 3 no disk available
FR NO FILE 4 file not found
FR NO PATH 5 path not correct
FR_INVALID NAME 6 invalid file name
FR _DENIED 7 file access denied
FR EXIST 8 file already exists
FR_INVALID OBJECT 9 file not opened with SDC FOpen
FR WRITE PROTECTED 10 disk write protected
FR_INVALID DRIVE 11 drive number invalid
FR_NOT ENABLED 12 logical drive not mounted
FR NO FILESYSTEM 13 no FAT table found on disk
FR MKFS ABORTED 14 not possible, since mkfs not available
FR _TIMEOUT 15 device is not answering

© 2011 Conrad Electronic

230

C-Control Pro Mega Series

6.20.2

6.20.3

SDC_FClose

SDCard Functions

Syntax
byte SDC FCl ose(byte fil ramaddr[]);

Sub SDC_FCl ose(ByRef fil ramaddr As Byte) As Byte

Description

Closes a previously opened file.
Parameter

fil ramaddr address of the FILE buffer
Return Parameter

Success of the called SDC function. See SDC Return Values.

SDC_FOpen

SDCard Functions

Syntax
byte SDC _FOpen(byte fil _ramaddr[], char path[], byte node);

Sub SDC_FOpen(ByRef fil_ranaddr As Byte, ByRef path As Char, npde As Byte) As Byte;

Description

Opens a file. For each open file a FILE buffer has to be created. For this we define a byte array of size 32.
=¥ The user-provided RAM buffer must be reserved during the access to the SD Card. Since local
variables will be released after leaving the function, it usually makes sense to declare the buffer as a
global variable.

Parameter

fil ramaddr address of the FILE buffer

path file path
mode file mode

Return Parameter

Success of the called SDC function. See SDC Return Values.

© 2011 Conrad Electronic

Libraries 231

mode parameter:
The individual parameters are ORed like e.g.:

FA_CREATE_NEW| FA WRITE // ConpactC
FA_CREATE NEWOr FA WRITE ' BASIC

Mode Value Description
FA OPEN EXISTING 0x00 Opens file. If file does not exist, then error
FA READ 0x01 File reading allowed
FA WRITE 0x02 File writing allowed
FA CREATE NEW 0x04 Creates file, if file already exists, then error
FA CREATE ALWAYS 0x08 Creates file, if file already exists, then file is truncated
FA OPEN ALWAYS 0x10 Opens file. If file does not exist, then file is created

6.20.4 SDC_FRead

SDCard Functions

Syntax
byte SDC _FRead(byte fil ramaddr[], byte buf[], word btr, word br[]);

Sub SDC_FRead(ByRef fil_ramaddr As Byte, ByRef buf As Byte, btr As Wrd, ByRef br /

Description

Reads data from an open file. The data is written at the reading position from the file into the buffer buf.
The number of bytes to read is btr, the number of bytes that were actually read is copied in the first
element of br. The reading position can be determined with SDC_FSeek.

Parameter

fil ramaddr address of the FILE buffer

buf RAM address to where the bytes a read from the SD-Card
btr number of bytes to read
br actual number of bytes read

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.5 SDC_FSeek

SDCard Functions

Syntax

byte SDC FSeek(byte fil_ramaddr[], dword pos);

© 2011 Conrad Electronic

232 C-Control Pro Mega Series

Sub SDC_FSeek(ByRef fil _ramaddr As Byte, pos As ULong) As Byte

Description

Sets the read / write position of the opened file. The position pos is always counted from the beginning of
the file.

Parameter

fil ramaddr address of the FILE buffer
pos read / write position

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.6 SDC_FSetDateTime

SDCard Functions

Syntax

byte SDC_FSet Dat eTi me(char path[], byte day, byte non, word year, byte min, byte hc

Sub SDC_FSet Dat eTi me(ByRef path As Char, day As Byte, non As Byte, year As Wrd,

Description

Set the date and time attributes of a file.

Parameter

path file path

day Day (1-31)

mon Month (1-12)

year Year (1980-2107)

min Minute (0-59)

hours Gour (0-23)

sec Second (0-59) (is always setto an even value)

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.7 SDC_FStat

SDCard Functions

Syntax

byte SDC_FStat(char path[], dword filinfo[]);

© 2011 Conrad Electronic

Libraries

Sub SDC_FSt at (ByRef path As Char, ByRef filinfo As ULong) As Byte

Description
Read attributes of a file to a dword (ULong) array with 4 elements.
Parameter

path file path
filinfo return array

Return Parameter

Success of the called SDC function. See SDC Return Values.

Ruckgabe Array:
fileinfo[0] file length
fileinfo[1] date
fileinfo[2] time
fileinfo[3] file attribute
Coding date:

Bits 0:4 - day: 1...31
Bits 5:8 - month: 1...12
Bits 9:15 - year begin with 1980: 0...127

Coding time:
Bits 0:4 - seconds/2: 0...29

Bits 5:10 - minute: 0...59
Bits 11:15 - hour: 0...23

Coding file attribute:
Bit1: Read Only

Bit 2: Hidden
Bit 3: Volume label
Bit 4: Directory
Bit 5: Archive

6.20.8 SDC_FSync

SDCard Functions

233

Syntax
byte SDC FSync(byte fil ramaddr[]);

Sub SDC _FSync(ByRef fil ramaddr As Byte) As Byte

Description

© 2011 Conrad Electronic

234

C-Control Pro Mega Series

6.20.9

Waits for all data to be written from the buffer into the file on the SD-Card.

Parameter

fil ramaddr address of the FILE buffer

Return Parameter

Success of the called SDC function. See SDC Return Values.

SDC_FTruncate

SDCard Functions

Syntax
byte SDC FTruncate(byte fil ranmaddr[]);

Sub SDC _FTruncat e(ByRef fil ranaddr As Byte) As Byte

Description

Delete the rest of the file from the current cursor position.
Parameter

fil ramaddr address of the FILE buffer

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.10 SDC_FWrite

SDCard Functions

Syntax

byte SDC FWite(byte fil ramaddr[], byte buf[], word btr,

word br[]);

Sub SDC_FWite(ByRef fil_ramaddr As Byte, ByRef buf As Byte, btr As Word, ByRef br

Description

Writes data to an open file. The data from the buffer buf is written to the file at current file position. The
parameter btr determines number of bytes to write. The number of bytes actual written is copied into the

first element of br. The write position can be determined with SDC_FSeek.

Parameter

fil ramaddr address of the FILE buffer

© 2011 Conrad Electronic

Libraries 235

buf RAM address from where the bytes a written to the SD-Card
btr number of bytes to write
br actual number of bytes written

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.11 SDC_GetFree

SDCard Functions

Syntax
byte SDC Get Free(char path[], dword kbfree[]);

Sub SDC_GCet Free(ByRef path As Char, ByRef kbfree As ULong) As Byte

Description

Returns the number of free clusters on the SD Card. The number of free clusters is copied to the first
element of the array kbfree.

Parameter

path path to the root of the disk.
kbfree return array

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.12 SDC_Init

SDCard Functions

Syntax
void SDC_Init(byte fat_ramaddr[]);

Sub SDC I nit(ByRef fat ramaddr As Byte)

Description

Initializes the SD card library. For this operation a FAT buffer must be created. Therefore an array of size
562 is declared.

=¥ The user-provided RAM buffer must be reserved during the access to the SD Card. Since local
variables will be released after leaving the function, it usually makes sense to declare the buffer as a
global variable.

Parameter

© 2011 Conrad Electronic

236 C-Control Pro Mega Series

fat ramaddr address of the FAT buffer

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.13 SDC_MKDir

SDCard Functions

Syntax
byte SDC_MkDir (char path[]);

Sub SDC_MkDir(ByRef path As Char) As Byte

Description

Creates a directory on the SD-Card.
Parameter

path path to the directory
Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.14 SDC_Rename

SDCard Functions

Syntax
byte SDC_Renane(char oldpath[], char newpath[]);

Sub SDC_Renane(ByRef ol dpath As Char, ByRef newpath As Char) As Byte

Description

Renames a file from oldpath to newpath.

Parameter

oldpath file path

© 2011 Conrad Electronic

Libraries 237

newpath path to file with new name

= |f newpath points to a directory other than oldpath, the file is not renamed only, but also moved into the
new directory. In newpath may not be logical disk number, only in oldpath.

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.15 SDC_Unlink

SDCard Functions

Syntax
byte SDC_Unlink(char path[]);

Sub SDC_Unl i nk(ByRef path As Char) As Byte

Description
Deletes afile.
Parameter

path file path
Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.16 SD-Card Example

/1 d obal variables
byte fat[562];
byte fil[32];

voi d nmai n(voi d)
{
/'l Local vari ables
byte res;
char buf[100];
word bytes witten[1];

/] SD-Card reset

Port_DatabDirBit(13,1); /1 PB.5 = output (EN1)
Port_DataDirBit(14,1); /1 PB.6 = Ausgang (EN2)
Port_WiteBit(13,1); /1l set EN1 for 50ms at +5V (PB.5)
Port_WiteBit(14,0); /1l set EN2 for 50ms to GND (PB. 6)
AbsDel ay(50); /1 50nms break

© 2011 Conrad Electronic

238 C-Control Pro Mega Series

Port _WiteBit(13,0); /1 EN1 GND
Port_WiteBit(14,1); /1 EN2 +5V

// Power on -> SD-Card
Port WiteBit(14,1); /1 EN2 (PB.6) +5V

AbsDel ay(50); /1 50nms Pause

// SD-Card Fat init
SDC Init (fat);

/] Create a new file folders
SDC MkDir ("0:/CC-PRO");

/'l Does the file already exists?

/1 If the file is not created

res=SDC_FOpen(fil, "0:/CC-PROtest.txt", FA_READ| FA_WRI TE| FA_OPEN_EXI STI NG) ;
i f(res!=0)SDC FOpen(fil, "0:/CC-PROtest.txt", FA WRI TE| FA_CREATE_ALWAYS) ;

/Il Wites to a text file

buf= "Hallo... 123!'\r\n";

SDC FWite(fil, buf, Str_Len(buf), bytes witten);
SDC_FSync(fil);

/Il File is closed
SDC_FCl ose(fil);

6.21 Servo

RC serws are composed of a DC motor mechanically linked to a potentiometer. Pulse-width
modulation (PWM) signals sent to the seno are translated into position commands by electronics
inside the seno. When the seno is commanded to rotate, the DC motor is powered until the
potentiometer reaches the value corresponding to the commanded position. The servo is controlled
by three wires: ground (usually black/orange), power (red) and control (brown/other colour). The seno
will move based on the pulses sent ower the control wire, which set the angle of the actuator arm.
The seno expects a pulse every 20 ms in order to gain correct information about the angle. The
width of the seno pulse dictates the range of the sernvo's angular motion. A servo pulse of 1.5 ms
width will set the seno to its "neutral" position, or 90°. For example a seno pulse of 1.25 ms could
set the senvo to 0° and a pulse of 1.75 ms could set the servo to 180°. The physical limits and
timings of the servo hardware varies between brands and models, but a general senvwo's angular
motion will travel somewhere in the range of 180° - 210° and the neutral position is almost always at
1.5 ms.

Connection to C-Control Pro

© 2011 Conrad Electronic

Libraries 239

Modelcraft +3V

- GND

Pulse

| —

+5Volt ist the supply wltage of the seno, it must provide enough current to drive the seno. The
ground of the sernvwo and the ground of the C-Control Pro unit must be the same. The pulse for the
seno is generated by the PWM signal of the C-Control unit.

6.21.1 Servo_lInit

Servo Functions Example

Syntax

void Servo_Init(byte servo cnt, byte servo interval, byte ramaddr[], byte tinmer);

Sub Servo_lnit(servo_cnt As Byte, servo_interval As Byte, ByRef ramaddr As Byte, ti

Description

Intializes the internal servo routines. The servo_cnt parameter controls how many serwos can be
driven at the same time. The seno_intenal parameter describes the period length (10 or 20ms), with
timer the used 16-Bit timer can be chosen. Timer 3 is only available on the Megal28. The user must
supply ram space to operate the senos. The required size is sernvo_cnt * 3. E.g., if the user wants to
operate 10 servos, at byte array of 30 bytes is needed.

= A 16-bit Timer is needed for the servo steering routines. This has to be Timer 1 or Timer 3 (Megal28).
Is the timer turned off, or is used for other purposes the servo routines will not work.

=¥ The user supplied ram space must be available the whole time the servos are working. Since after
leaving a function the local variables are no longer available, it is most times a good idea to provide the
user supplied ram as a global variable.

© 2011 Conrad Electronic

240 C-Control Pro Mega Series
Parameter
servo_cnt number of possible servos (maximum 20)
servo_interval periodic length (0=10ms, 1=20ms)
ramaddr address of memory block
timer 16-Bit Timer used for servo steering (0=Timer 1, 1=Timer 3 only Megal128)
6.21.2 Servo_Set

Servo Functions Example

Syntax

voi d Servo_Set (byte porthit, word pos);

Sub Serial _Init(portbhit As Byte,

Description

pos As Word)

Sets the pulse length to steer the actuator arm. The output port is set with the portbit parameter

(See Pin Assignment of M32 and M128).

=% The sum of all user set pulse lengths should not exceed the period length (see servo_interval
parameter), otherwise an erratic behaviour could happen. E.g. with 20ms period length, a total of 8 servos
can each be set to a pulse length of 2500us. To have some safety margin, the sum of the pulse lengths

should be less than the period length for a small amount.

Parameter

portbit bitnumber of port (see table)

pos pulse length for servo in psec (500 - 2500)

Portbits Table

Definition Portbit
PortA0 0
PortA.7 7
PortB.0 8
PortB.7 15
PortC.0 16
PortC.7 23
PortD.0 24
PortD.7 31

from here only Megal28
PortE.O 32

© 2011 Conrad Electronic

Libraries 241

PortE.7 39
PortF.0 40
PortF.7 47
PortG.0 48
PortG.4 52

6.21.3 Servo Example

byte servo_var[30]; // Servo internal variables

/1l Activation of 3 Servos and stop after 10 seconds
voi d nmai n(voi d)

{
/1 Max. 10 Servos, 20ms interval, Timer 3
Servo_Init(10, 1, servo_var, 1);
Servo_Set (7, 2000); [// Servo Porthit 7 2000us
Servo_Set (6, 1800); // Servo Portbhit 6 1800pus
Servo_Set (5, 1600); // Servo Porthit 5 1600pus
AbsDel ay(5000);
Servo_Set (7, 1000); // Servo Portbhit 7 1000ps
AbsDel ay(5000);
Servo_Set (7, 0); /1 all Servos off
Servo_Set (6, 0);
Servo_Set (5, 0);

}

6.22 SPI

The Serial Peripheral Interface Bus or SPI bus is a synchronous serial data link standard named by
Motorola that operates in full duplex mode. Devices communicate in master/slave mode where the
master device initiates the data frame. Multiple slave devices are allowed with individual slave select
(chip select) lines.

6.22.1 SPI_Disable

SPI Functions

Syntax
voi d SPI _Di sabl e(voi d);

Sub SPI _Di sabl e()

© 2011 Conrad Electronic

242

C-Control Pro Mega Series

6.22.2

Description

The SPI will be disabled and the corresponding ports can be used otherwise.

=¥ Disabling the SPI interface will prevent usage of the USB interface on the application board. On the
other hand, if you don't use the USB interface, SPI_Disable() will allow to use these ports for other

purposes.
Parameter

None

SPI_Enable

SPI Functions

Syntax
void SPI _Enabl e(byte ctrl);

Sub SPI _Enabl e(ctrl As Byte)

Description

The SPlinterface is initialized with the value of ctrl (see SPCR register in Atmel Mega Reference Manual).

Parameter
ctrl initialization parameter (Mega SPCR Register)

Bit 7 - SPI Interrupt Enable (do not enable, cannot be used from C-Control Pro now)
Bit 6 - SPI Enable (must be set)

Bit5 - Data Order (1 = LSB first, 0 = MSB first)

Bit 4 - Master/Slave Select (1 = Master, 0 = Slave)

Bit 3 - Clock polarity (1 = leading edge falling, 0 = leading edge rising)

Bit 2 - Clock Phase (1 = sample on trailing edge, 0 = sample on leading edge)

Bit 1 Bit 0 SCK Frequency
0 0 fosc 1 4
0 1 fosc / 16
1 0 foee ! 64
1 1 foee / 128

=» Please consider, that f,_ = 14,7456 Mhz for C-Control Pro Mega 32 and Megal28 , while the

C-Control Pro Megal28 CAN works at 16 Mhz.

© 2011 Conrad Electronic

Libraries

6.22.3 SPI_Read

SPI Functions

243

Syntax
byte SPI _Read();

Sub SPI _Read() As Byte

Description

Abyte is read from the SPI interface.

Return Parameter

received byte from the SPI interface

6.22.4 SPI_ReadBuf

SPI Functions

Syntax
voi d SPI _ReadBuf (byte buf[], byte |ength);

Sub SPI _ReadBuf (ByRef buf As Byte, length As Byte)

Description

Anumber of bytes are read from the SPI interface into an array.

Parameter

buf pointer to byte array

length number of bytes to read

6.22.5 SPI_Write

SPI Functions

Syntax
void SPI_Wite(byte data);

Sub SPI_Wite(data As Byte)

Description

© 2011 Conrad Electronic

244 C-Control Pro Mega Series

One byte is send to the serial interface.

Parameter

data output byte value

6.22.6 SPI_WriteBuf

SPI Functions

Syntax
void SPI _WiteBuf(byte buf[], byte |ength);

Sub SPI_WiteBuf (ByRef buf As Byte, |length As Byte)

Description

Anumber of bytes are sentto the SPlinterface.

Parameter

buf pointer to byte array
length number of bytes to be transferred

6.23 Strings

One part of these string routines is implemented in the Interpreter, another can be called up after
appending library "String_Lib.cc". Since the functions in "String_Lib.cc" are realized through
Bytecode they are slower when executed. Library functions however have the advantage that they
can be taken from the project by omitting the library in case they are not needed. Direct Interpreter
functions are always present, will howewer take up flash memory.

There is no explicit "String" data type. A string is based on a character array. The size of the array
must be chosen in such a way that all characters of the string fit into the character array.
Additionally some space is needed for a terminating character (decimal Zero) in order to indicate the
end of the character string.

6.23.1 Str_Comp

String Functions

Syntax
char Str_Comp(char strl[],char str2[]);

Sub Str_Conp(ByRef strl As Char, ByRef str2 As Char) As Char

© 2011 Conrad Electronic

Libraries 245

Description
Two strings are compared.
Parameter

strl pointer to char array 1

str2 pointer to char array 2

Return Parameter

0 both strings are equal

<0 if the first string is smaller than the second
>0 if the first string is greater than the second

Remark

The attribute smaller or greater is specified for the character difference at the first point of difference
between both strings.

6.23.2 Str_Copy

String Functions

Syntax
void Str_Copy(char destination[],char source[],word offset);

Sub Str_Copy(ByRef destination As Char,ByRef source As Char,offset As
Wor d)

Description

The source string (source) is copied to the destination string (destination). During copying also the string
termination character of the source character string is copied.

Parameter

desti nati on pointerto destination string

source pointer to source string
offset Number of characters by which the source string is offset when copied to the destination
string..

If offset has the value STR_APPEND (0xffff) then the length of the destination string is assumed as
offset. In this case the source string is copied behind the destination string.

6.23.3 Str_Fill

String Functions (Library"String_Lib.cc")

Syntax

© 2011 Conrad Electronic

246 C-Control Pro Mega Series

void Str_Fill(char dest[],char c,word |en);

Sub Str_Fill (ByRef dest As Char,c As Char,len As Wrd)

Description

The string dest is filled with character c.
Parameter

dest pointer to destination string

€ character that is written into the string
en count, how often ¢ is written into the string

6.23.4 Str_Isalnum

String Functions (Library"String_Lib.cc")

Syntax
byte Str_lsal nun(char c);

Sub Str_lsalnum(c As Char) As Byte

Description

Acharacter is tested if itis alphabetically or a digit.
Parameter

¢ tested character

Return Parameter

1 if the characteris alphabetically or a digit (upper- or lowercase)
0 else

6.23.5 Str_Isalpha

String Functions (Library "String_Lib.cc")

Syntax
byte Str_lsal pha(char c);

Sub Str_lsal pha(c As Char) As Byte

Description

Acharacter is tested if itis alphabetically.

© 2011 Conrad Electronic

Libraries 247

6.23.6

6.23.7

Parameter
c tested character
Return Parameter

1 if the character is alphabetically (upper- or lowercase)
0 else

Str_Len

String Functions

Syntax
word Str_Len(char str[]);

Sub Str_Len(ByRef str As Char) As Word

Description

The length of the string (character array) is returned.
Parameter

str pointer to string

Return Parameter

length of the string (without terminating zero)

Str_Printf

String Functions Example

Syntax

void Str_Printf(char str[], char format[], ...);

Sub Str_Printf(ByRef str As Char, ByRef format As Char, ...)
Description

This function creates a formatted string into str. The format string is similar to the formatting of printf() in C.
The format always begins with "%", then follow optional flags (0,l), and it ends with a type (d,x,s,f). In the
following table all type parameters are explained. Between % and type an optional width and precision
can be used.

%flags][width][.prec]Typ (the brackets describes the optional part)

© 2011 Conrad Electronic

The width is the minimal space for the output of the number. If the number is smaller than width, the
number is padded to the left with spaces. If the width begins with "0" the leftis padded width "0" instead of
spaces. A period "." describes an optional precision parameter, that defines the number of decimal
places, when floating point numbers (%f) are used, or the base of the number when using unsigned

= |f there is no "I" flag when a 32-Bit number is printed, only the lower 16 bits are displayed.

248 C-Control Pro Mega Series

integer (%u). See Str_Printf Example.
Flags Description
0 padd with "0"
| 32-Bit Integer
Format Description
%qwidth]d integer
%width][.prec]u unsigned integer
%qwidth]x hexadecimal
9%qwidth][.prec]f floating point
%width]s string
9dwidth]c char

Parameter

str pointer to string

format pointer to format string

6.23.8 Str_ReadFloat

String Functions

Syntax

float Str_ReadFl oat (char str[]);

Sub Str_ReadFl oat (ByRef str As Char) As Single

Description

The value of a string representing a floating point nhumber is returned. The number is recognized,

ewven if there or other characters after the number.

Parameter

str pointer to string
Return Parameter

floating point value of string

© 2011 Conrad Electronic

Libraries 249

6.23.9 Str_ReadInt

String Functions

Syntax
int Str_Readlnt(char str[]);

Sub Str_Readl nt (ByRef str As Char) As Integer

Description

The value of a string representing an integer number is returned. The number is recognized, even if
there or other characters after the number.

Parameter
str pointer to string
Return Parameter

integer value of string

6.23.10 Str_ ReadNum

String Functions

Syntax
word Str_ReadNum(char str[], byte base);

Sub Str_ReadNum(ByRef str As Char, base As Byte) As Word

Description

The value of a string representing an unsigned number is returned. The number is recognized, even if
there or other characters after the number. The base parameter is the base of the numeric value. E.
g. to read a hexadecimal number, a base of 16 is to apply.

Parameter

str pointer to string
base base of converted number

Return Parameter

numeric value of string

© 2011 Conrad Electronic

250

C-Control Pro Mega Series

6.23.11 Str_Substr

String Functions (Library"String_Lib.cc")

Syntax
int Str_SubStr(char source[],char search[]);

Sub Str_SubStr(ByRef source As Char, ByRef search As Char) As Integer

Description

Asubstring search is searched inside string source. If the substring is found, the position of the substring
is returned.

Parameter

source string thatis searched
search substring thatis looked for

Return Parameter

position of the found substring
-1 else

6.23.12 Str_WriteFloat

String Functions

Syntax
void Str_WiteFloat(float n, byte decimal, char text[], word offset);

Sub Str_WiteFloat(n As Single,decimal As Byte, ByRef text As Char, offset
As Word)

Description

The floating point number n is converted to an ASCII string with decimal number of decimal digits after the
period. The resultis stored in the string text with an offset of offset. The offset parameter is used to change
a string after a specified number (offset) of characters and leave the beginning of the string intact.

Parameter

n float number

decimal number of decimal digit after the period

text pointer to destination string

offset offsetthatis applied to the position where the string is copied

If offset has the value STR_APPEND (0xffff) then the length of the destination string is assumed as
offset. In this case the source string is copied behind the destination string.

© 2011 Conrad Electronic

Libraries 251

6.23.13 Str_Writelnt

String Functions

Syntax
void Str_Witelnt(int n, char text[], word offset);

Sub Str_Witelnt(n As Integer, ByRef text As Char,offset As Wrd)

Description

The integer number n is converted to a signed ASCII string. The result is stored in the string text with an
offset of offset. The offset parameter is used to change a string after a specified number (offset) of
characters and leave the beginning of the string intact.

Parameter

n integer number

text pointer to destination string

offset offsetthatis applied to the position where the string is copied

If offset has the value STR_APPEND (Oxffff) then the length of the destination string is assumed as
offset. In this case the source string is copied behind the destination string.

6.23.14 Str_WriteWord

String Functions

Syntax

void Str_Witewrd(word n,byte base, char text[],word of f set, byte

m nwi dt h) ;

Sub Str_Witewrd(n As Wrd, base As Byte, ByRef text As Char,offset As
Word, minwidth As Byte)

Description

The word n is converted to an ASCII string. The resultis stored in the string text with an offset of offset. The
offset parameter is used to change a string after a specified number (offset) of characters and leave the
beginning of the string intact. If the resulting string is smaller than minwidth the beginning of the string
gets filled with zeros "0".

The base of the numbering system can be given in the base parameter. If you set base to 2, you will get a
string with binary digits. Abase of 8 produces an octal string, and a base of 16 a hexadecimal string. If the
base is setto a number greater than 16, more characters of the alphabet are used. E.g. a base of 18
produces a string with the digits '0'-'9' and 'A-'H".

Parameter

© 2011 Conrad Electronic

252 C-Control Pro Mega Series

n 16 bit word

base base of the number system

text pointer to destination string

offset offset that is applied to the position where the string is copied

minwidth minimal width of the string

If offset has the value STR_APPEND (0xffff) then the length of the destination string is assumed as
offset. In this case the source string is copied behind the destination string.

6.23.15 Str_Printf Example

/'l Compact C
voi d mai n(voi d)
{
char str[80];

/1 Integer
Str_Printf(str, "argl: %l\r", 1234);
Msg WiteText(str);

/1 Quput of integer, floating point, string und hex nunber

Str_Printf(str, "argl: 98d arg2: %40. 3f arg3: %®20s arg4: W\r",
1234, 2.34567, "hello world", 256);

Msg WiteText(str);

Str_Printf(str, "argl: % arg2: % 2u\r", 65000, Oxff);

Msg WiteText(str);}

}
' Basic
Sub mai n()
Dim str(80) As Char
Str_Printf(str, "argl: 9%98d arg2:9d0.3f arg3: %20s arg4: wW\r",
1234, 2.34567, "hello world", 256)
Msg WiteText(str)
Str_Printf(str, "argl: % arg2: % 2u\r", 65000, &Hff)
Msg WiteText(str)
End Sub

6.24 Threads

Multi Threading

Multi Threading is a so to speak parallel execution of several tasks in a program. One of these tasks
is called “Thread”. When Multi Threading it will rather rapidly be toggled between the various threads
so the impression of simultaneousness is created.

© 2011 Conrad Electronic

Libraries 253

The C-Control Pro firmware supports besides the main program (Thread "0") up to 13 additional
threads. With Version 2.12 of the IDE the multithreading changed. Before 2.12 the user could set in
the project options the number of Bytecodes that were executed before there was a thread change.
This behavior was unfair, because some Bytecodes (especially floating point) needed much more
CPU time than other Bytecodes. Now the multithreading scheduler works with time cycles. A user
can assign the number of 10ms cycles a thread has before the next threads get executed.

In multithreading, after a certain number of time cycles the current thread will be set "inactive" and
the next executable thread is searched for. After that the execution of the new thread will be started.
The new thread may again be the same as before depending on how many threads had been
activated or are ready for processing. The main program counts as first thread. Therefore thread "0"
is active at all times even if no threads have explicitly been started.

The priority of threads can be influenced by changing the number of time cycles which one thread is
allowed to execute until the next thread change takes place. The smaller the number of cycles until
the change takes place, the lower the priority of the thread.

Thread Configuration

Before IDE version 2.12 the threads were configured in the project options. That has changed. The
configuration is now placed inside the source code with the new "#thread" keyword. The syntax is:

#t hread t hread_nunber, ram used, nunber_of tine_cyl ces

A thread will receive as much space for its local variables as has been assigned to it. The exception
is thread "0" (the main program). This thread will receive the entire memory space that has been left
over by the other threads. The RAM assignment by the "#thread 0" statement for the main thread is
ignored. Therefore it should be planned in advance how much memory space may be needed by
each additional thread.

=¥ The "#thread" statements need not be near the thread functions, but may be anywhere in the
program. If no threads are used, a "#thread 0" command is unnecessary. If you forget to define a
thread, the thread_start is ignored.

Example CompactC:

#thread 0, 0, 20 /1 main thread with task change every 20 * 10nms = 200ns
#thread 1, 128, 10 // thread 1 with 128 Byte RAM & task change 10 * 10ns = 100ns
#thread 2, 256, 10 // thread 2 with 256 Byte RAM & task change 10 * 10ns = 100ns

Example BASIC (syntax identical to CompactC):

#thread 0, 0, 20 " main thread with task change every 20 * 10nms = 200ns
#thread 1, 128, 10 ' thread 1 with 128 Byte RAM & task change 10 * 10nms = 100mns
#thread 2, 256, 10 ' thread 2 with 256 Byte RAM & task change 10 * 10ms = 100ns

=¥ Since e. g. Serial Read will wait until a character arrives from the serial interface, a thread can in
some cases be active longer than the assigned number of time cycles.

=» When working with threads Thread Delay rather than AbsDelay should always be used. If

© 2011 Conrad Electronic

254 C-Control Pro Mega Series
nevertheless e. g. an AbsDelay(1000) is used, the thread will wait for 1000ms ewen if a smaller
number of time cycles is assigned.
Thread Synchronisation
Sometimes it is necessary for a thread to wait for another thread. This may e. g. be a common
hardware resource which can only execute one thread. Sometimes also critical program areas may
be defined which may only be entered by one thread. This functions are being realized through
instructions Thread Wait and Thread_Signal.
A thread bound to wait will execute instruction Thread_Wait with a signal number. The condition of
the thread is set on waiting. This means that the thread may be ignored at a possible thread change.
If the other thread has completed its critical work it will send the command Thread_Signal with the
same signal number the first thread had used for its Thread_Wait. The thread condition of the waiting
thread will change from waiting to inactive and will then be considered again at a possible thread
change.
Deadlocks
When all active threads set out for a waiting condition with Thread Wait then there will be no more
threads which can release the other threads from their waiting conditon. Therefore these
constellations should be avoided when programming.
Table Thread Conditions
Condition Meaning
active The thread is presently executed
inactive Can be activated again after a thread change
sleeping Will after a number of ticks be set to "inactive”
again
waiting The thread awaits a signal
6.24.1 Thread_Cycles

Thread Functions

Syntax
voi d Thread_Cycl es(byte thread, word cycles);

Sub Thread_Cycl es(thread As Byte, cycles As Wrd)

Description
Sets the number of executed bytecode instructions before thread change to the parameter cycles.

=p |f a thread is freshly started, it will get the cycle count that was defined in the project options. It only

© 2011 Conrad Electronic

Libraries 255

makes sense to call Thread_Cylces() after a thread has been started.
Parameter

thread (0-13) number of the thread
cycles cycle countuntil thread change

6.24.2 Thread_Delay

Thread Functions Example

Syntax
void Thread_Del ay(word del ay);

Sub Thread_Del ay(del ay As Word)

Description

With this function a thread will setto "sleep" for a specified time. After this time the thread is again ready for
execution. The waiting period is given in ticks that are created by Timer 2. If Timer 2 is set off or used for
other purposes, the mode of operation of Thread_Delay() is not defined.

= Even if Thread_Delay() looks like any other wait function, you have to keep in mind that the
thread is not automatically executed after the waiting period. The thread is then ready for execution,
but it will not started until the next thread change.

Parameter

delay number of 10ms ticks that should be waited

6.24.3 Thread Info

Thread Functions

Syntax
word Thread_I nfo(byte info);

Sub Thread_I nfo(info As Byte) As Wrd

Description

The function returns information about the calling thread. The info parameter defines what kind of
information is returned.

Parameter

info values:

© 2011 Conrad Electronic

256 C-Control Pro Mega Series

TI_THREADNUM number of the calling thread
TI_STACKSIZE defined stack size
TI_CYCLES number of cycles before thread change

Return Parameter

info result

6.24.4 Thread Kill

Thread Functions

Syntax
void Thread Kill (byte thread);

Sub Thread Kill (thread As Byte)

Description
Terminates a thread. If 0 is given as thread number, the whole program will be terminated.
Parameter

thread (0-13) thread number

6.24.5 Thread _Lock

Thread Functions

Syntax
voi d Thread_Lock(byte | ock);

Sub Thread_Lock(l ock As Byte)

Description

With this function you can inhibit thread changes. This is reasonable if you have a series of port operations
or other hardware actions that should nottimely be separated in a thread change.

=¥ |f you forget to remove the thread lock, the multithreading is not working.
Parameter

lock ifsetto 1 thread changes are inhibited, 0 means thread changes are allowed

© 2011 Conrad Electronic

Libraries 257

6.24.6 Thread_MemkFree

Thread Functions

Syntax
word Thread_MenFree(void);

Sub Thread_MenFree() As Wrd

Description

Returns the free memorythatis available for the calling thread.
Parameter

None

Return Parameter

free memoryin bytes

6.24.7 Thread Resume

Thread Functions

Syntax
voi d Thread_Resune(byte thread);

Sub Thread_Resune(thread As Byte)

Description

If a thread has the state "waiting" it can be set to "inactive" with this function call. "Inactive" means that a
thread is ready for activation at a thread change.

Parameter

thread (0-13) thread number

6.24.8 Thread_Signal

Thread Functions

Syntax
voi d Thread_Si gnal (byte signal);

Sub Thread_Si gnal (signal As Byte)

© 2011 Conrad Electronic

258

C-Control Pro Mega Series

6.24.9

Description

Has a thread been set to state "waiting" with a call to Thread Wait() it can be set to "inactive" with a call to
Thread_Signal(). The signal parameter must have the same value as the value that has been used in the
call to Thread_Wait().

Parameter

signal signal value

Thread_Start

Thread Functions Example

Syntax
void Thread_Start(byte thread, dword func);

Sub Thread_Start(Byte thread As Byte, func As ULong)

Description
Anew thread gets started. Every function in the program can be used as starting function for the thread.

=¥ |fthe thread is started inside a function that has parameters defined in the function header, the value
of these parameters is undefined!

Parameter

thread (0-13) thread number
func function name of the function where the thread will be started

6.24.10 Thread_Wait

Thread Functions

Syntax
void Thread_Wait(byte thread, byte signal);

Sub Thread_Wait(thread As Byte, signal As Byte)

Description

The thread gets the state "waiting". The state can be changed back to "inactive" with calls to
Thread_Resume() or Thread_Signal().

© 2011 Conrad Electronic

Libraries 259

Parameter

thread (0-13) thread number
signal signal value

6.24.11 Thread Example

/1 denmo program of multithreading
/1l this program nmakes no debouncing, therefore a short trigger of the switch
/1l can lead to nore than one string outputs

#thread 0, 0, 10 /1 main thread with task change every 10 * 10ns = 100ns
#thread 1, 128, 10 // thread 1 with 128 Byte RAM & task change 10 * 10ns = 100ns

voi d threadl(void)

{
whil e(true) // endless |oop
{
if(!Port_ReadBit(PORT_SW2)) Msg WiteText(str2); // SW is pressed
}
}

char stri1[12],str2[12];

voi d mai n(voi d)

{
strl="Switch 1";
str2="Switch 2";
Port _DataDirBit(PORT_SW, PORT_IN); // set Pin to input
Port _DataDirBit(PORT_SW2, PORT_IN); // set Pin to input
Port WiteBit(PORT_SW, 1); [// set pull-up
Port WiteBit(PORT_SW, 1); [// set pull-up
Thread_Start(1,threadl); // start new Thread
whi |l e(true) /1 endl ess | oop
{
if(!'Port_ReadBit(PORT_SW)) Msg WiteText(strl); // SW is pressed
}
}

6.24.12 Thread Example 2

/1 multithread2: nultithreading with Thread_Del ay()
/'l necessary library: IntFunc_Lib.cc

#thread 0, 0, 10 /1 main thread with task change every 10 * 10ns = 100ns
#thread 1, 128, 10 // thread 1 with 128 Byte RAM & task change 10 * 10ns = 100ns

voi d threadl(void)

© 2011 Conrad Electronic

260 C-Control Pro Mega Series

{

whil e(true)

{

Msg WiteText(str2); Thread_Del ay(200);

} [l "Thread2" is displayed

} /1l after that the thread
/'l sleeps for 200ns

char stri1[12],str2[12]; /'l global variable declaration
e e e
/'l main program
/1
voi d mai n(voi d)
{

str1="Threadl"; /'l variable declaration

str2="Thread2"; /'l variable declaration

Thread_Start(1,threadl); /1 start new thread

whi l e(true) /1l endl ess | oop

{

Thread_Del ay(100); Mg WiteText(strl);

} /'l the thread sl eeps for 100ns

} /1l after that "Threadl" is displayed
6.25 Timer

In C-Control Pro Mega 32 there are two, in Megal28 are three independent timers available. These
are Timer_0 with 8 bit and Timer_1 with 16 bit (Timer_3 with 16 bit for Megal28 only). Timer_2 is
used by the firmware as an internal time base and is set firm to a 10ms interrupt. These internal
timers can be utilized for a multitude of tasks:

Event Counter

Frequency Generation

Pulse Width Modulation
Timer Functions

Pulse & Period Measurement

Frequency Measurement

6.25.1 Event Counter

Here are two examples for how a Timer can be used for an Event Counter:

Timer0 (8 Bit)

/1 Exanple: Pul se Counting with CNTO
Ti ner TOCNT();
pul se(n); /1 generate n Pul ses

© 2011 Conrad Electronic

Libraries 261

count =Ti mer__TOGet CNT() ;

= \With Megal28 for reasons of the hardware the use of Timer_0 as counter is not possible!

Timerl (16 Bit)

/1 Exanpl e: Pulse Counting with CNT1
Tiner TI1CNT();

pul se(n); /1 generate n Pul ses
count =Ti mer__T1Get CNT();

6.25.2 Frequency Generation

To generate frequencies Timer_0, Timer_1 and Timer_3 can be utilized as follows:

Timer0 (8 Bit)

1. Example:

/1l Square Wave Signhal with 10*1,085 pus = 10,85 ps Period Duration
Ti mer _TOFRQ(10, PSO_8)

2. Example: Pulsed Frequency Blocks (Project FRQO)

voi d nmai n(voi d)
{
int delval; /1l Variable for the On/OFf Tine
del val =200; /'l Val ue Assignnment for Variable delval

/'l Frequency: Period=138,9 us*100=13,9 ns, Frequency=72Hz
Ti mer _TOFRQ(100, PSO_1024); // Timer is set to Frequency

while (1)

{
AbsDel ay(del val); /1 Time Delay by 200ns
Ti mer _TOSt op(); /[l Timer is stopped
AbsDel ay(del val) ; /1 Time Delay by 200ns

Timer _TOStart (PS0_1024); // Timer will be switched on with
/1 Timer Prescal er PS0_1024.

}

=% The program will on Mega128 not work in USB mode since output PB4 is in conjunction with the USB
interface used on the Application Board.

Timerl (16 Bit)

Example: Frequency Generation with 125 * 4,34 us = 1085us Period

© 2011 Conrad Electronic

262

C-Control Pro Mega Series

6.25.3

6.25.4

Ti mer T1FRQ 125, PS_64) ;

Timer3 (16 Bit) (only Megal28)

Example: Frequency Generation with 10*1,085 ps =10,85 ps Period and 2*1,085us =2,17 us Phase Shift

Ti mer T3FRQX(10, 2, PS_8);

Frequency Measurement

Timer_1 (16Bit) and Timer_3 (16Bit) (only Megal28) can be used for direct measurement of a
frequency. The pulses per second are being counted, the result is then delivered in Hertz units. The
maximum frequency is 64kHz and is yielded by the 16 bit counter. An example for this kind of
frequency measurement can be found under "Demo Programs/FreqMeasurement”. By shortening the
measuring time also higher frequencies can be measured. The result has then to be re-calculated
accordingly.

Pulse Width Modulation

There are two independent timers available for pulse width modulation. These are Timer_0 with 8 bit and
Timer_1 with 16 bit. By use of a pulse width modulation Digital-Analog-Converters can be realized very
easily. On the Megal28 Timer_3 can be used additionally.

Timer0 (8 Bit)

Example: Pulse Width Modulation with 138,9 us Period and 5,42 us Pulse Width, changed to 10,84 us
Pulse Width

[l Pulse: 10*542,5 ns = 5,42 us, Period: 256*542,5 ns = 138,9 us
Ti mer _TOPWM 10, PSO_8) ;

Ti mer _TOPW(20) ; /1 Pulse: 20*542,5 ns = 10, 84 ps

Timerl (16 Bit)

Example: Pulse Width Modulation with 6,4 ms Period and 1,28 ms Pulse Width Channel A and 640 ps
Pulse Width Channel B

Ti mer T1PWMX(10, 20, 10, PS_1024); // Period: 100*69,44 pus = 6,94 ns
/1l Pul seA: 20*69,44 us = 1,389 ns
/1l PulseB: 10*69,44 pus = 694,4 us

=» When using the PWM timer functions a value of zero for the duty parameter is not allowed,
and will not turn the PIN off. To produce a low signal, the timer must be turned off (Timer_Disable)
and the PIN should be switched to output. If a PWM function is used, that generates multiple PWM
signals, then a PWM function should be called (e.g. Timer_T1PWM), that will not include the PIN,
that should be switched to low.

© 2011 Conrad Electronic

Libraries 263

An example:

whi | e(1)
{
Ti mer _T1PWWX(255, 128, 128, PS_8) ;
Ti mer _T1PWA(128);
Ti mer _T1PWB(128);

AbsDel ay(1000);

/'l set OC1B off

Ti mer _Di sabl e(1);

Ti mer _T1PWM 255, 128, PS_8);
Port _DataDirBit(14,1);
Port_WiteBit(14,0);

6.25.5 Pulse & Period Measurement

By use of Timer_1 or Timer_3 (only Megal28) pulse widths and signal periods can be measured.
Here by use of the Input Capture Function (specific register of the Controller) the time between two
signal slopes is measured. This function utilizes the Capture-Interrupt (INT_TIM1CAPT). A pulse is
measured between a rising and the next falling signal edge. A period is measured between two rising
signal edges. Because of the Input Capture Function program delay times will not as an inaccuracy
be entered into the measuring result. With a programmable prescaler the resolution of Timer_1 can
be set. Prescaler see Table.

Example: Activate Pulse Width Measurement (Project PMeasurement) 434 ps (100 x 4,34 us, see Table
)

word PM Val ue;

void Tinmerl | SR(void)

{

int irqgcnt;

PM Val ue=Ti ner _T1Get PM);

i rgcent =l rqg_Get Count (I NT_TI MLCAPT) ;
}

voi d mai n(voi d)
{
byte n;

/1 Define Interrupt Service Routine
I rg_Set Vect (I NT_TI MLCAPT, Tiner1_I| SR);

Ti mer _TOPWM 100, PSO_64) ; [/l Start Pulse CGenerator Tiner O

/1 Measurenent starts here

© 2011 Conrad Electronic

264 C-Control Pro Mega Series

/1 Qutput TinmerO OCO(PortB.3) connect to |ICP(input capture pin, PortD.6)

PM Val ue=0;
/1l Set node to Pulse Wdth Measurenent and determ ne prescaler
Ti mer _T1PM 0, PS_64);

whi | e(PM_Val ue==0) ; /1 Measure Pulse Wdth or Period

Msg WiteHex(PM Value); // Qutput Measuring Val ue
}

= For reason of better survey only a simplified version is shown here. Because of a collision on Pin
B.4 Timer_0 is used for pulse generation with Megal28. The entire program can be found in directory
PW_Measurement.

6.25.6 Timer Functions

In C-Control Pro Mega 32 there are two, in Megal28 three independent Timer available. These are
Timer_0 with 8 bit and Timer_1 with 16 bit (Timer_3 with 16 bit for Megal28 only). The timer have a
programmable prescaler (see Table). After the defined period the timer will trigger an interrupt. An
interrupt routine can then be used to execute specific actions.

Timer_TOTime (8 Bit)

Example: Timer0O: Switch output on with a delay of 6,94 ms (100x 69,44 us, see Table)

void Tinmer0_I SR(voi d)

{
int irqcnt;
Port _WiteBit(0,1);
Ti mer _TOSt op() ; /1 stop TinerO
i rqcnt =Irq_Get Count (I NT_TI MDCOWP) ;
}
voi d mai n(voi d)
{
Port _DataDirBit (0, 0); /1 PortA 0 Cutput
Port _WiteBit(0,0); /1l PortA 0 CQutput=0
I rg_Set Vect (I NT_TI MOCOWP, TinerO0_I SR);// define Interrupt Service Routine
Ti mer _TOTi ne(100, PSO_1024); /1l set tinme and start TinerO
/1l other program code....
}

© 2011 Conrad Electronic

Libraries 265

6.25.7 Timer_Disable

Timer Functions

Syntax
voi d Tinmer_Di sabl e(byte tiner);

Sub Ti mer _Di sabl e(tinmer As Byte)

Description

This function disables the specified timer. Timer functions occupy I/O ports. If a timer is not needed and
the corresponding I/O ports are used otherwise, the timer must be disabled.

Parameter
0=Timer_0

1=Timer_1
3 =Timer_3 (onlyMegal28)

6.25.8 Timer_TOCNT

Timer Functions

Syntax
voi d Ti mer _TOCNT(void);

Sub Ti mer _TOCNT()

Description

These function initializes Counter0. Counter0 gets incremented at every positive signal edge at Input
Mega32:TO (PIN1).

=¥ Due to hardware reasons itis not possible to use Timer_0 as a counter in the Mega128!
Parameter

None

6.25.9 Timer_TOFRQ

Timer Functions

Syntax
void Tinmer _TOFRQ(byte period, byte PS);

Sub Ti mer _TOFRQ(period As Byte, PS As Byte)

© 2011 Conrad Electronic

266 C-Control Pro Mega Series

Description

This function initializes Timer0 for frequency generation. Parameters are period duration and prescaler,
see table. The output signal is generated at Mega32: PortB.3 (PIN4), Megal28: PortB.4 (X1_4). The
frequency generation is started automatically. There is a extended prescaler definition for the Megal28,
see table.

Parameter

period period duration
PS prescaler

Table prescaler:

Prescaler Tickduration Mega32

PSO 1 (1) 135,6 ns

PS0 8 (2) 1,085 ys

PS0 64 (3) 8,681 us

PS0 256 (4) 34,72 us

PS0 1024 (5) 138,9 us

Prescaler Tickduration Megal28 Tickduration Megal28 CAN
PSO 1(1) 135,6 ns 125 ns
PS0 8 (2) 1,085 us 1us
PS0O 32 (3) 4,340 us 4 us
PS0O 64 (4) 8,681 us 8us
PS0O 128 (5) 17,36 us 16 us
PS0 256 (6) 34,72 us 32 us
PS0 1024 (7) 138,9 us 128 us

6.25.10 Timer_TOGetCNT

Timer Functions

Syntax
byte Ti mer_TOGet CNT(voi d);

Sub Timer_TOGet CNT() As Byte

Description
The value of Counter0 is read. If there was an overflow a value of Oxff is returned.

=¥ Due to hardware reasons itis not possible to use Timer_0 as a counter in the Mega128!

© 2011 Conrad Electronic

Libraries 267

Return Parameter

counter value

6.25.11 Timer_TOPW

Timer Functions

Syntax
voi d Ti mer _TOPW byte PW;

Sub Ti mer _TOPW PW As Byt e)

Description
This function sets a new pulse width for Timer0 without changing the prescaler.

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

PW pulse width

6.25.12 Timer_TOPWM

Timer Functions

Syntax
voi d Timer _TOPWM byte PWbyte PS);

Sub Ti mer _TOPWM PW As Byte, PS As Byte)

Description

This function initializes TimerO with given prescaler and pulse width, see table. The output signal is
generated at Mega32: PortB.3 (PIN4), Megal28: PortB.4 (X1_4). There is an extended prescaler definition
for the Megal28, see table.

Parameter

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation

PW pulse width
PS prescaler

Table prescaler:

© 2011 Conrad Electronic

268

C-Control Pro Mega Series

6.25.13 Timer_TOStart

Timer Functions

6.25.14 Timer_TOStop

Prescaler Tickduration Mega32

PSO 1(1) 67,8 ns

PS0 8(2) 5425 ns

PS0 64 (3) 4,34 us

PS0 256 (4) 17,36 us

PS0 1024 (5) 69,44 us

Prescaler Tickduration Megal28 Tickduration Megal28 CAN
PS0 1 (1) 67,8 ns 62,5ns
PS0 8(2) 5425 ns 500 ns
PSO 32 (3) 2,17 us 2 us
PS0O 64 (4) 4,34 us 4 us
PS0 128 (5) 8,68 us 8 us
PS0 256 (6) 17,36 us 16 ys
PS0 1024 (7) 69,44 us 64 us

Syntax

void Timer_TOStart(byte prescaler);

Sub Timer_TOStart (prescal er As Byte)

Description

The timer continues with the already set parameters. The prescaler must be given again.

Parameter

prescaler prescaler (see table)

Timer Functions

Syntax

voi d Tinmer_TOSt op(void);

Sub Ti mer _TOSt op()

Description

© 2011 Conrad Electronic

Libraries 269

The frequency generation gets stopped. The output signal can be 0 or 1, dependent on the last state. Only
the clock generation is stopped, all other settings staythe same.

Parameter

None

6.25.15 Timer_TOTime

Timer Functions

Syntax
void Tinmer_TOTi me(byte Tine, byte PS);

Sub Timer _TOTi me(Time As Byte, PS As Byte)

Description

This function initializes Timer_0 with a prescaler and a timer interval value, see table. After the timing
interval is expired The Timer_O Interrupt (INT_TIMOCOMP) is triggered. There is an extended prescaler
definition for the Megal28, see table.

Parameter

Time time period after that the interruptis triggered
PS prescaler

Table prescaler:

Prescaler Tickduration Mega32

PSO 1(1) 67,8 ns

PS0 8 (2) 542,5ns

PS0O 64 (3) 4,34 ys

PS0 256 (4) 17,36 us

PS0 1024 (5) 69,44 us

Prescaler Tickduration Megal28 Tickduration Megal28 CAN
PSO 1(1) 67,8 ns 62,5 ns
PSO 8 (2) 5425 ns 500 ns
PS0 32 (3) 2,17 us 2 us
PS0O 64 (4) 4,34 us 4 us
PS0O 128 (5) 8,68 us 8 us
PS0 256 (6) 17,36 us 16 us
PS0 1024 (7) 69,44 us 64 us

© 2011 Conrad Electronic

270 C-Control Pro Mega Series

6.25.16 Timer_T1CNT

Timer Functions

Syntax
void Tinmer_T1CNT(void);

Sub Ti mer _T1CNT()

Description

These function initializes Counterl. Counterl gets incremented at every positive signal edge at Input
Mega32: PortB.1 (PIN2) Megal28: PortD.6 (X2_15).

Parameter

None

6.25.17 Timer T1CNT_Int

Timer Functions

Syntax
void Timer _TICNT_Int(word limt);

Sub Timer TICNT Int(limt As Word)

Description

These function initializes Counterl. Counterl gets incremented at every positive signal edge at Input
Mega32: PortB.1 (PIN2) Megal28: PortD.6 (X2_15). After the limit is reached an interrupt ("Timerl
CompareA" - define: INT _TIMICMPA) is triggered. An appropriate Interrupt Service Routine must be
specified.

Parameter
limit

6.25.18 Timer_T1FRQ

Timer Functions

Syntax
void Tinmer_T1FRQ(word period, byte PS);

Sub Ti mer _T1FRQ(period As Word, PS As Byte)

© 2011 Conrad Electronic

Libraries 271

Description

This function initializes Timerl for frequency generation. Parameters are period duration and prescaler,
see table. The output signal is generated at Mega32: PortD.5 (PIN19). Megal28: PortB.5 (X1_3). The
frequency generation is started automatically. There is an extended prescaler definition for the Megal28,
see table.

Parameter

period period duration
PS prescaler

Table prescaler:

Prescaler Tickduration Mega32 + Megal?28 | Tickduration Megal28 CAN
PS 1 (1) 135,6 ns 125ns

PS 8 (2) 1,085 us 1pus

PS 64 (3) 8,681 us 8 us

PS 256 (4) 34,72 us 32 us

PS 1024 (5) 138,9 us 128 ps

6.25.19 Timer_T1FRQX

Timer Functions

Syntax
voi d Tinmer _T1FRQX(word period, word skew, byte PS);

Sub Ti mer _T1FROX(peri od As Wrd, skew As Word, PS As Byte)

Description

This function initializes Timerl for frequency generation. Parameters are period duration, prescaler and
phase shift,see table. The output signal is generated at Mega32: PortD.5 (PIN19). Megal28: PortB.5
(X1_3). The frequency generation is started automatically. There is an extended prescaler definition for the
Megal28, see table. The phase shift must be smaller than half the period.

Parameter
period period duration

skew phase shift
PS prescaler (table prescaler)

6.25.20 Timer_T1GetCNT

Timer Functions

Syntax

© 2011 Conrad Electronic

272 C-Control Pro Mega Series

word Timer_T1Get CNT(void);

Sub Timer_T1Get CNT() As Word

Description
The value of Counterl is read. If there was an overflow a value of Oxffff is returned.
Return Parameter

counter value

6.25.21 Timer_T1GetPM

Timer Functions

Syntax
word Timer_T1Get PM void);

Sub Timer_T1GetPM) As Word

Description

Returns the result of the measurement.
Parameter

None

Return Parameter

result of measurement

=¥ To calculate the correct value, the 16bit result is multiplied with the entry of the prescaler Table
that was passed in the call to Ti ner T1PM

6.25.22 Timer_T1PWA

Timer Functions

Syntax
void Tinmer T1PWA(word PWD);

Sub Timer _T1PWA(PW As Word)

Description

© 2011 Conrad Electronic

Libraries 273

This function sets a new pulse width (Channel A) for Timerl without changing the prescaler.

= For the pulse-width parameters do not use the value zero. See Pulse Width Modulation

Parameter

PWO0O pulse width

6.25.23 Timer_T1PM

Timer Functions

Syntax
void Tinmer_T1PM byte Mde, byte PS);

void Timer_T1PM Mode As Byte, PS As Byte)

Description

This function defines if pulse width measurement or period measurement should be done. Then it
initializes Timer_1 and sets the prescaler.

Parameter
Mode 0 = pulse width measurement, 1 = period measurement

PS prescaler

Table prescaler:

Prescaler Tickduration Mega32 + Megal28 Tickduration Megal28 CAN
PS 1(1) 67,8 ns 62,5 ns

PS 8 (2) 5425 ns 500 ns

PS 64 (3) 4,34 us 4 us

PS 256 (4) 17,36 us 16 us

PS 1024 (5) 69,44 us 64 us

6.25.24 Timer_T1PWB

Timer Functions

Syntax
void Tinmer_ T1PWB(word PW);

Sub Timer _T1PWB(PWL As Word)

Description

© 2011 Conrad Electronic

274 C-Control Pro Mega Series

This function sets a new pulse width (Channel B) for Timerl without changing the prescaler.

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

PW1 pulse width

6.25.25 Timer_T1PWM

Timer Functions

Syntax
void Timer _T1IPWM word period, wrd PW, byte PS);

Sub Ti mer _T1PWM period As Word, PWD As Word, PS As Byte)

Description

This function initializes Timer_1 with given period duration, pulse width and prescaler, see table. The
output signal is generated at Mega32: PortD.5 (PIN19), Megal28: PortB.5 (X1_3). There is an extended
prescaler definition for the Megal28, see table.

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter
period period duration

PWO pulse width
PS prescaler

Table prescaler:

Prescaler Tickduration Mega32 + Megal28 Tickduration Megal28 CAN
PS 1(1) 67,8 ns 62,5 ns

PS 8 (2) 5425 ns 500 ns

PS 64 (3) 4,34 us 4 us

PS 256 (4) 17,36 us 16 us

PS 1024 (5) 69,44 us 64 us

6.25.26 Timer_T1PWMX

Timer Functions

Syntax

voi d Timer _T1IPWWX(word period, word PW,word PW, byte PS);

© 2011 Conrad Electronic

Libraries 275

Sub Timer_T1PWWX(period As Word, PW0 As Word, PAL As Word, PS As Byte)

Description

This function initializes Timer_1 with given period duration, prescaler, pulse width for channel Aand B. The
output signal is generated at

Mega32: PortD.4 (PIN18) and PortD.5 (PIN19). Megal128: PortB.5 (X1_3) and PortB.6 (X1_2).

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation
Parameter

period period duration

PWO pulse width channel A

PW1 pulse width channel B
PS prescaler (see table prescaler)

6.25.27 Timer_T1PWMY

Timer Functions

Syntax

voi d Timer _T1PWWY(word period, word PW, word PWL, word PW2, byte PS);

Sub Timer _T1PWW(period As Word, PWD As Word, P As Word, P2 As Word, PS
As Byte)

Description

This function initializes Timer_1 with given period duration, prescaler, pulse width for channel A, B and C.
The output signal is generated at
PortB.5 (X1_3), PortB.6 (X1_2) and PortB.7 (X1_1).

=¥ For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

period period duration

PWO pulse width channel A

PW1 pulse width channel B

PW2 pulse width channel C

PS prescaler (see table prescaler)

© 2011 Conrad Electronic

276 C-Control Pro Mega Series

6.25.28 Timer_T1Start

Timer Functions

Syntax
void Timer_T1Start(byte prescaler);

Sub Timer_T1Start (prescaler As Byte)

Description

The timer continues with the already set parameters. The prescaler must be given again.

Parameter

prescaler prescaler (see table)

6.25.29 Timer_T1Stop

Timer Functions

Syntax
void Tinmer_T1Stop(void);

Sub Timer _T1St op()

Description

The frequency generation gets stopped. The output signal can be 0 or 1, dependent on the last state. Only
the clock generation is stopped, all other settings staythe same.

Parameter

None

6.25.30 Timer_T1Time

Timer Functions

Syntax
void Tinmer_TiTi me(word Tine, byte PS);

Sub Timer_T1Time(Tine As Word, PS As Byte)

Description

© 2011 Conrad Electronic

Libraries

277

This function initializes Timer_1 with a prescaler and a timer interval value (16bit), see table. After the
timing interval is expired Timer_1 Interrupt (INT_TIM1CMPA) is triggered. There is an extended prescaler
definition for the Megal28, see table.

Parameter

Time time period after that the interruptis triggered

PS prescaler

Table prescaler:

Prescaler Tickduration Mega32 + Megal28 Tickduration Megal128 CAN
PS_1(1) 67,8 ns 62,5 ns

PS 8(2) 5425ns 500 ns

PS_64 (3) 4,34 ps 4 s

PS 256 (4) 17,36 ps 16 us

PS 1024 (5) 69,44 ps 64 us

6.25.31 Timer_T3CNT

Timer Functions

Syntax

voi d Timer_T3CNT(void);

Sub Ti mer _T3CNT()

Description

These function initializes Counter3. Counter3 gets incremented at every positive signal edge at

PortE.6 (X1_10)
Parameter

None

6.25.32 Timer_T3CNT_Int

Timer Functions

Input

Syntax

void Tinmer _T3CNT_Int(word limt);

© 2011 Conrad Electronic

278

C-Control Pro Mega Series

Sub Timer T3CNT_Int(limit As Word)

Description

These function initializes Counter_3. Counter_3 gets incremented at every positive signal edge at Input
PortE.6 (X1_10). After the limit is reached an interrupt ("Timer3 CompareA" - define: INT_TIM3CMPA) is
triggered. An appropriate Interrupt Service Routine must be specified.

Parameter

limit

6.25.33 Timer_T3FRQ

Timer Functions

Syntax

voi d Timer _T3FRQ(word period, byte PS);

Sub Ti mer _T3FRQ(period As Wrd, PS As Byte)

Description

This function initializes Timer3 for frequency generation. Parameters are period duration and prescaler,

see table. The output signal is generated at

automatically..
Parameter

period period duration
PS prescaler

Table prescaler:

PortE.3 (X1_13). The frequency generation is started

Prescaler Tickduration Megal28 Tickduration Megal28 CAN
PS 1(1) 135,6 ns 125 ns

PS _8(2) 1,085 us 1yps

PS_64 (3) 8,681 ps 8 ys

PS 256 (4) 34,72 ys 32 us

PS 1024 (5) 138,9 ys 128 us

© 2011 Conrad Electronic

Libraries 279

6.25.34 Timer_T3FRQX

Timer Functions

Syntax
voi d Tinmer _T3FRQX(word period, word skew, byte PS);

Sub Ti mer _T3FROQX(period As Wrd, skew As Word, PS As Byte)

Description

This function initializes Timer3 for frequency generation. Parameters are period duration, prescaler and
phase shiftsee table. The output signal is generated at PortE.3 (X1_13) und PortE.4 (X1_12). The
frequency generation is started automatically. There is an extended prescaler definition for the Megal28,
see table. The phase shift must be smaller than half the period.

Parameter
period period duration

skew phase shift
PS prescaler (table prescaler)

6.25.35 Timer_T3GetCNT

Timer Functions

Syntax
word Tinmer_T3Get CNT(voi d);

Sub Tinmer_T3Get CNT() As Word

Description
The value of Counterl is read. If there was an overflow a value of Oxffff is returned.
Return Parameter

counter value

6.25.36 Timer_T3GetPM

Timer Functions

Syntax
word Ti nmer_T3CGet PM voi d);

Sub Tinmer_T3GetPM) As Word

© 2011 Conrad Electronic

280 C-Control Pro Mega Series

Description

Returns the result of the measurement.
Parameter

None

Return Parameter

result of measurement

=¥ To calculate the correct value, the 16bit result is multiplied with the entry of the prescaler Table
that was passed in the call to Ti ner T3PM

6.25.37 Timer_T3PWA

Timer Functions

Syntax
voi d Ti mer _T3PWA(word PWD);

Sub Timer _T3PWA(PW As Wrd)

Description
This function sets a new pulse width (Channel A) for Timer3 without changing the prescaler.

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

PWO pulse width

6.25.38 Timer_T3PM

Timer Functions

Syntax
void Timer _T3PM byte Mdde, byte PS);

voi d Timer _T3PM Mode As Byte, PS As Byte)

Description

This function defines if pulse width measurement or period measurement should be done. Then it

© 2011 Conrad Electronic

Libraries

initializes Timer_3 and sets the prescaler.

Parameter

Mode 0 = pulse width measurement, 1 = period measurement

PS prescaler

Table prescaler:

Prescaler Tickduration Megal28 Tickduration Megal28 CAN
PS 1(1) 67,8 ns 62,5 ns

PS 8(2) 5425 ns 500 ns

PS_64 (3) 4,34 ys 4 s

PS 256 (4) 17,36 us 16 us

PS 1024 (5) 69,44 ps 64 us

6.25.39 Timer_T3PWB

Timer Functions

281

Syntax

void Tinmer_ T3PWB(word PW);

Sub Timer _T3PWB(PWL As Word)

Description

This function sets a new pulse width (Channel B) for Timer3 without changing the prescaler.

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

PW1 pulse width

6.25.40 Timer_T3PWM

Timer Functions

Syntax

void Timer _T3PWM word period, wrd PW, byte PS);

Sub Ti mer _T3PWM period As Word, PWD As Word, PS As Byte)

© 2011 Conrad Electronic

282 C-Control Pro Mega Series

Description

This function initializes Timer_3 with given period duration, pulse width and prescaler, see table. The
output signal is generated at PortE.3 (X1_13).

=¥ For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter
period period duration

PWO pulse width
PS prescaler

Table prescaler:

Prescaler Tickduration Megal28 Tickduration Megal28 CAN
PS 1(1) 67,8 ns 62,5 ns

PS 8(2) 5425 ns 500 ns

PS_64 (3) 4,34 ys 4 s

PS_256 (4) 17,36 us 16 ys

PS 1024 (5) 69,44 us 64 us

6.25.41 Timer_T3PWMX

Timer Functions

Syntax
voi d Timer _T3PWMX(word period, word PW,word PW, byte PS);

Sub Ti mer _T3PWMX(period As Wrd, PAD As Word, PAML As Word, PS As Byte)

Description

This function initializes Timer_3 with given period duration, prescaler, pulse width for channel Aand B. The
output signal is generated at

PortE.3 (X1_13) and PortE.4 (X1_12).

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

period period duration

PWO pulse width channel A

PW1 pulse width channel B

PSs prescaler (see table prescaler)

© 2011 Conrad Electronic

Libraries 283

6.25.42 Timer_T3PWMY

Timer Functions

Syntax

voi d Timer _T3PWWY(word period, word PW,word PWL, word PW2, byte PS);

Sub Timer _T3PWW(period As Word, PWD As Word, P As Word, P2 As Word, PS
As Byte)

Description

This function initializes Timer_3 with given period duration, prescaler, pulse width for channel A, B and C.
The output signal is generated at
PortE.3 (X1_13), PortE.4 (X1_12) and PortE.5 (X1_11).

= For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

period period duration

PWO pulse width channel A

PW1 pulse width channel B

PW2 pulse width channel C

PS prescaler (see table prescaler)

6.25.43 Timer_T3Start

Timer Functions

Syntax

void Tinmer_T3Start(byte prescaler);

Sub Timer_T3Start(prescaler As Byte)

Description
The timer continues with the already set parameters. The prescaler must be given again.

Parameter

prescaler prescaler (see table)

© 2011 Conrad Electronic

284

C-Control Pro Mega Series

6.25.44 Timer_T3Stop

Timer Functions

Syntax

void Tinmer_T3Stop(void);

Sub Ti mer _T3St op()

Description

The frequency generation gets stopped. The output signal can be 0 or 1, dependent on the last state. Only
the clock generation is stopped, all other settings staythe same.

Parameter

None

6.25.45 Timer_T3Time

Timer Functions

Syntax

void Tinmer_T3Ti me(word Tine, byte PS);

Sub Timer_T3Ti me(Time As Wrd, PS As Byte)

Description

This function initializes Timer_3 with a prescaler and a timer interval value (16bit), see table. After the
timing interval is expired Timer_3 Interrupt (INT_TIM3CMPA) is triggered.

Parameter

Time time period after thatthe interruptis triggered

PS prescaler

Table prescaler:

Prescaler Tickduration Megal28 Tickduration Megal28 CAN
PS 1(1) 67,8 ns 62,5 ns

PS 8(2) 5425 ns 500 ns

PS 64 (3) 4,34 ps 4 us

PS 256 (4) 17,36 us 16 us

PS 1024 (5) 69,44 us 64 us

© 2011 Conrad Electronic

Libraries 285

6.25.46 Timer_TickCount

Timer Functions

Syntax
word Ti mer _Ti ckCount (voi d);

Sub Ti mer _Ti ckCount () As Word

Description

Measures the number of 10ms ticks between two calls of Timer_TickCount(). Ignore the return value of
the first call to Timer_TickCount(). If the delay between the two calls is greater than 655.36 seconds,
the result is undefined.

Parameter

None

Return Parameter

time interval expressed in 10ms ticks

Example

voi d mai n(voi d)

{

word tine;

Ti mer _Ti ckCount () ;

AbsDel ay(500); // wait 500 ms

time=Ti mer _TickCount(); // the value should be 50
}

© 2011 Conrad Electronic

FAQ| 287

7 FAQ

Problems

1. No USB connection existing to the Application Board.

e Has the FTDI USB driver been loaded onto the PC? Or does “Unknown Device” appear in the
Hardware Manager, when the USB connector is plugged in?

¢ Has the correct communication port been set in Options->IDE->Interfaces?

e Are the ports M32:B.4-B.7,A.6-A.7 resp. M128:B.0-B.4,E.5 erroneously being used in the software
(see pin assignment of M32 and M128)? Are the jumpers on the Application Board set to these
ports?

¢ A signal on M32:PortD.2 resp. M128:PortE.4 (SW1) during startup will activate the serial
Bootloader.

e (Megal28 only) Is Port.G4 (LEDZ2) on Low during Reset? See SPI Switch Off in chapter
"Firmware".

2. The serial interface does not issue any characters or does not receive any characters.

¢ Are the Ports D.0-D.1 erroneously used in the software (see pin assignment of M32 and M128)?
Are the jumpers on the Application Board set to these ports?

3. The Application Board does not react to any commands when serially connected.

¢ In order to get the Bootloader into the serial mode the button SW1 must be pressed during startup
of the Application Board (obsere jumper for SW1). For the serial mode M32:PortD.2 resp. M128:
PortE.4 (SW1) can also be fixed to GND lewel.

4. The Hardware Application does not start by itself (Autostart Behaviour).

¢ A signal on the SPI interface during startup may activate USB communication.
¢ A signal on M32:PortD.2 resp. M128:PortE.4 (SW1) during startup may activate the serial
Bootloader.

5. The key assignment of the editor "xyz" has been set but some keyboard commands do not
function.

¢ The possibility to switch on the key assignment of a specific editor in the IDE is only an
approximation. Sometimes it is too expensive to support the corresponding functions in a “foreign”
editor, some other time the keyboard commands can collide with the keyboard shortcuts in the
IDE.

6. The spelling check does not function.
¢ |s the spelling check switched on in Options->Editor?

¢ The spelling check does only display spelling errors in the commentaries. The check of any other
area would not make sense.

© 2011 Conrad Electronic

288

C-Control Pro Mega Series

7. Where can be determined whether the new project is a BASIC or C project?

e There is no difference in project type. The source text files in a project determine which
programming language is being used. Files with the extension *.cc will run in a CompactC
context, Files with the extension *.cbas will be translated into BASIC. Also C and BASIC can be
combined in a project.

8. I am using an LCD other than the one shipped with the product, but am using the same Controller.
The cursor positions do not work correctly.

¢ The Controller can display 4 lines at 32 characters each. The beginnings of the lines are stored
transposed in memory following the scheme below:

Value of pos Position in the display
0x00-0x1f 0-3linthe line 1
0x40-0x5f 0-31in the line 2
0x20-0x3f 0-31in the line 3
0x60-0x6f 0-31in the line 4

9. How much RAM do | have for my programs?
e There are 930 bytes left for own programs on the Mega32, on the Megal28 remain 2494 bytes.
Interpreter and Debugger are using buffer for interrupt driven /O, and 256 bytes for the data stack.

Beside this resources, there are some internal tables, that are needed for interrupt handling and
multitasking. Additionally some RAM Variables are used from library functions.

10. Where is the second serial interface on the Megal28 Application Board?

e See J4 chapter Jumper Application Board M128.

11. | need no USB connection to the application board, how can | reclaim the reserved ports for

UsB?

¢ The USB interface is wired to the C-Control module over the SPI interface. The SPI interface can
be disabled with SPI_Disable(). Do not forget to remove the jumper that connects the SPI with the
Mega8 (USB interface) on the application board.

12. Where do | have the supply wltage on the breadboard?

e |f you turn the application board to a position where the interface connectors (USB and serial)

show to the upper side, the leftmost column on the breadboard is GND and the rightmost column
is VCC. You can see it clearly, when you take a look of the backside of the board.

13. I need more ports for my hardware application. Many ports are used by other functions.

© 2011 Conrad Electronic

FAQ| 289

¢ Take alook at the Pin Assignment of M32 and M128. You can use all ports that have no special
functionality (SPI, RS232, LCD, Keyboard etc.) that is needed for your application. Do not forget
to remowve the jumper that connects the port pins to the application board. Otherwise the behaviour
can be undetermined.

14. How can | switch on the Pull-Up resistor of a port?

e First switch the port to input with PortDataDir() (or PortDataDirBit()), then use PortWrite() (or
PortWriteBit()) to write a "1" into the port.

15. Where are the demo programs located?

e Due to Vista Compatibility the demo programs are installed to "\Documents and Settings\All
Users\Documents" (XP and earlier) or to "\Users\Public\Public Documents" (Vista) directory.
When replacing an old installation, the old "Demos" directory is deleted. Therefore please create
own programs outside of the "C-Control Pro Demos" directory.

16. Can | program the C-Control Pro Module in Linux?

e There is no native IDE for Linux, but customer had successfully started the IDE under Wine und
programmed the module in serial mode.

17. Is it possible to develop for C-Control Pro with other Compilers?

¢ There are many deweloping systems for the Atmel Mega CPU. Some of these Compilers are
commercial, others a free. A good example of a free development system is the GNU C-Compiler.
You can transfer programs, that you wrote with the GNU C-Compiler, to the Atmel Mega CPU with
a AVR ISP programmer. But once you overwrote the installed bootloader, there is no way back,
you cannot longer use the C-Control Pro software.

© 2011 Conrad Electronic

290 C-Control Pro Mega Series

Index

- 109, 131
_H -

#define 97
#endif 97
#ifdef 97
#include 97
#pragma 99

-+ -

++ 109, 131
_A -

AbsDelay 153

AComp 154

acos 195

Actualize Variable 82
ADC _Disable 157
ADC_Read 157
ADC_Readint 158

ADC Set 158
ADC_Setint 159
ADC_Startint 160
Addition 108, 130
Analog-Comparator 154, 155
And 109, 130

arc cosine 195

arc sine 195

arc tangent 196
Arithmetic Operators 108, 130
Array 104, 125

Array Window 81

ASCIl 146

asin 195

Assembler 142
Assembler Compendium 146

Assembler Data Access 144
Assembler Examples 142
atan 196

Atmel Register 175, 176
Auto Actualize 82
Autostart 17, 77

_B -

baud rate 92

Bit inversion 109, 130

Bit Operators 109, 130
Bitshift Operators 109, 131
Bootloader 17

break 111, 112, 114, 116
Breakpoints 80

Byte 103, 125

_C -

CANBus 160
CAN Examples 162
CAN_Exit 163
CAN_GetInfo 163
CAN_Init 164
CAN_MObSend 166
CAN_Receive 165
CAN_SetMOb 166

Cascade 93
Case 114, 136
ceil 196

Change Variable 82

Char 103, 125

Clock_Getval 167

Clock_SetDate 168

Clock_SetTime 168

COM Port 92

Comments 101, 123

Communication 90

CompactC 100

Comparison Operators 110, 131

compile 65

compile projects 65

Compiler Presetting 88

Component Parts Plan Megal28 Appl. Board 57
Component Parts Plan Mega32 Appl. Board 48

© 2011 Conrad Electronic

Index

Conditional Valuation 111

Connection Diagram Megal28 32
Connection Diagram Megal28 Appl. Board 55
Connection Diagram Megal28 CAN 39
Connection Diagram Mega32 25

Connection Diagram Mega32 Appl. Board 45
Conrad 4

Context Help 94

continue 111, 112, 116

Corrections 4

cos 197

Cosine 197

CPU AT90CAN128 36

CPU choosage 68

CPU Megal28 29

CPU Mega32 22

D -

data bits 92

Data Types 103, 125
DCF_FRAME 170
DCF_INIT 171
DCF_Lib.cc 169
DCF_PULS 171
DCF_RTC.cc 169
DCF_START 172
DCF_SYNC 172

DCF77 169
Debugger 80
default 114

DirAcc_Read 175
DirAcc_Write 176
Direct_Access 175
Divider 220
Division 108, 130
Do 132,133
do while 111
dword 103

_E -

Editor 70

Editor Settings 85
EEPROM 176, 177, 178, 179
EEPROM_Read 176

EEPROM_ReadFloat 177
EEPROM_ReadWord 177
EEPROM_Write 178
EEPROM_WriteFLoat 179
EEPROM_WriteWord 178
Else 113, 135

email 4

equal 110, 131

Event Counter 260

exclusive Or 109, 130
Exit 132, 133, 134
exp 197

Expressions 101, 123
Ext 183

Ext_IntDisable 185
Ext_IntEnable 184
external RAM 50, 97

_E -

fabs 198
FAQ 287
Fax 4
Firewall 91
Firmware 17
float 103
floor 198

For 112,134

formatted print 247
Frequency Generation 261
Frequency Measurement 262
Functions 116, 137

-G -

Goto 113, 135
GPP 4

greater 110, 131
greater or equal

_H -

Handling 2
Hardware 17, 76
Hardware Version 79
Help 94

110, 131

291

© 2011 Conrad Electronic

292 C-Control Pro Mega Series

History 4
- -

I2C Status Codes 182
I2C Init 179
I2C_Read ACK 180
I2C_Read NACK 180

I2C_Start 180
I2C_Status 181
I2C_Stop 181
I2C_Write 182
IDE 64

IDE Settings 89
Identifier 101, 123

If 113, 135

Insert Variable 82
Installation 11, 15
Instruction Block 101, 123
Instructions 101, 123
int 103

Integer 125

Intended use 3
Internal Functions 153
Internet Explorer 91
Internet Update 91
IntFunc_Lib.cc 153
Introduction 2

IRQ 183

IRQ Example 186
Irg_GetCount 185
Irg_SetVect 186

_] -

Jumper Megal28 Appl. Board 52
Jumperr Mega32 Appl. Board 43

“K -

Key_Init 187
Key_Scan 187
Key_TranslateKey 188
Keyboard Layout 85
Keyboard Shortcuts 74

L -

LCD Matrix 19
LCD_ClearLCD 188
LCD_CursorOff 189
LCD_CursorOn 189
LCD_CursorPos 190
LCD_Init 190

LCD _Locate 191
LCD_Sublnit 191
LCD_TestBusy 192
LCD_WriteChar 192
LCD_WriteCTRRegister 192
LCD_WriteDataRegister 193
LCD_WriteFloat 193
LCD_WriteRegister 194
LCD_WriteText 194
LCD_WriteWord 194
ldexp 199

left shift 109, 131
Liability 3

Library Management 69
In 199

log 199

logical And 110
logical Not 110
logical Operators 110
logical Or 110

long 103

Loop While 132

M -

Map File 99

Megal28 Application Board 49
Megal28 CAN Module 32
Megal28 Module 25
Megal28 Projectboard 60
Mega32 Application Board 39
Mega32 Module 19

Mega32 Projectboard 58
messages 65

Modulo 108, 130
Msg_WriteChar 173
Msg_WriteFloat 173

© 2011 Conrad Electronic

Index

Msg_WriteHex 173
Msg_Writeint 174
Msg_WriteText 174
Msg_WriteWord 175
Multiplication 108, 130

_N -

New features 4
Next 134

next error 65

not equal 110, 131

_ 0O -

Onewire Example 205
Onewire_Read 203
Onewire_Reset 204
Onewire_Write 205
Open Source 4
Operator Precedence 119
Operator Table 120, 141
Operators 108, 129
Options 85

Or 109, 130

Outputs 78

_P-

Pattern 76

Period Measurement 263
PIN 78

Pin Assignment Megal28 30
Pin Assignment Megal28 CAN
Pin Assignment Mega32 23
Pointer 116, 137
Port_DataDir 207
Port_DataDirBit 208
Port_ Read 209
Port_ReadBit 210
Port_Toggle 211
Port_ToggleBit 211

Port Write 212
Port_WriteBit 213

pow 200

Precedence 140

37

predefined arrays 104, 125
Predefined Symbols 98
Preprocessor 97
previous error 65

Print Preview 73
Program 100, 122
Program version 94
Project 65

Project Name 65
project options 68
projectfiles 66

Projects 65

Proxy 91

Pulse Measurement 263
Pulse Width Modulation = 262

"R -

rand 202
RC5 215
RC5 Init 218

RC5 Read 219
RC5_Write 220
reference wltage 158, 159
Refresh Editor View 70
Regular Expressions 76
rename projects 66
Replace 72

resened 121, 141
resened Words 121, 141
right shift 109, 131
round 200

RS232 Interface 90

_S-

SDC Return Values 229
SDC_FClose 230
SDC_FOpen 230

SDC FRead 231

SDC _FSeek 231
SDC_FSetDateTime 232
SDC_FStat 232
SDC_FSync 233
SDC_FTruncate 234
SDC_FWrite 234

293

© 2011 Conrad Electronic

294 C-Control Pro Mega Series

SDC_GetFree 235
SDC_Init 235
SDC_MkDir 236
SDC_Rename 236
SDC _Unlink 237
SD-Card Example 237
Search 72
Select 136

serial Bootloader 17
Serial Example 227
Serial Example (IRQ) 227
Serial_Disable 222
Serial_Init 222
Serial_Init_ IRQ 223
Serial_IRQ_Info 224
Serial_Read 225
Serial_ReadExt 225
Serial Write 226
Serial_WriteText 226
Senice 4

Servo 238

Seno Example 241
Servo_Init 239
Seno_Set 240
Sign 108, 130
sin 201

sine 201

Single 125
SizeOf 104, 125
Sleep 154
smaller 110, 131
smaller or equal 110, 131
Smart Tabulator 85
Spellchecking 89
SPI switch off 17
SPI Disable 241
SPI_Enable 242
SPI Read 243
SPI_ReadBuf 243
SPI_Write 243
SPI_WriteBuf 244
Splashscreen 89
sgrt 201

square root 201
SRAM 50, 97
srand 203

Start Program 77
Static 104, 125
stop bits 92

Str Comp 244
Str_ Copy 245
Str_Fill 245
Str_Isalnum 246
Str_Isalpha 246
Str_Len 247
Str_Printf 247
Str_Printf Example 252
Str_ReadFloat 248
Str_Readint 249
Str_ReadNum 249
Str_Substr 250
Str_WriteFloat 250
Str_WritelInt 251
Str_WriteWord 251
Strings 103, 104, 125, 244
Subtraction 108, 130
switch 114
Syntax Highlight 86

- T -

Tables 104, 125
tan 202

tangent 202
Terminal 84
Terminal Settings 92
thread options 67
Thread _Cycles 254
Thread Delay 255
Thread_Info 255
Thread Kill 256
Thread Lock 256
Thread_MemFree 257
Thread Resume 257
Thread_Signal 257
Thread_Start 258
Thread Wait 258
Threads 252

Tile Horizontal 93
Tile Vertical 93
Timer 260

Timer Functions 264

© 2011 Conrad Electronic

Index

Timer_Disable 265
Timer_TOCNT 265
Timer_TOFRQ 265
Timer_TOGetCNT 266
Timer_TOPW 267
Timer_TOPWM 267
Timer_TOStart 268
Timer_TOStop 268
Timer_TOTime 269
Timer_TICNT 270
Timer_T1CNT_ Int 270
Timer_ TIFRQ 270

Timer TIFRQX 271
Timer_T1GetCNT 271
Timer_T1GetPM 272
Timer_T1PM 273
Timer_T1IPWA 272
Timer TIPWB 273
Timer_TIPWM 274
Timer TIPWMX 274
Timer TIPWMY 275

Timer_T1Start 276

Timer_T1Stop 276
Timer_T1Time 276
Timer_T3CNT 277
Timer_T3CNT_Int 277
Timer_T3FRQ 278

Timer_T3FRQX 279
Timer_T3GetCNT 279
Timer_T3GetPM 279
Timer_T3PM 280
Timer_T3PWA 280
Timer_T3PWB 281
Timer_T3PWM 281
Timer_T3PWMX 282
Timer_T3PWMY 283
Timer_T3Start 283
Timer_T3Stop 284
Timer_T3Time 284
Timer_TickCount 285
Tool Settings 92
Tools 84

Transfer 77

Type Conwersion 103, 125

U -

unsigned char 103
unsigned int 103
use 11

USB Interface 90

_V -

Variables 104, 125

Variables Window 82
Version Check 79

Visibility of Variables 104, 125
wid 116

W -

Warranty 3
While 116, 133
Window 93

Word 103, 125

295

© 2011 Conrad Electronic

	Important Notes
	Introduction
	Reading this operating manual
	Handling
	Intended use
	Warranty and Liability
	Service
	Open Source
	History

	Installation
	Applicationboard
	Software

	Hardware
	Firmware
	LCD Matrix
	Mega32 Module
	CPU
	Pin Assignment
	Connection Diagram

	Mega128 Module
	CPU
	Pin Assignment
	Connection Diagram

	Mega128 CAN Module
	CPU
	Pin Assignment
	Connection Diagram

	Mega32 Application Board
	Jumper Application Board
	Connection Diagram
	Component Parts Plan

	Mega128 Application Board
	Jumper Application Board
	Connection Diagram
	Component Parts Plan

	Mega32 Projectboard
	Mega128 Projectboard

	IDE
	Projects
	Create Projects
	Compile Projects
	Project Management
	Thread Options
	Project Options
	Library Management

	Editor
	Editor Functions
	Print Preview
	Keyboard Shortcuts
	Regular Expressions

	C-Control Hardware
	Start Program
	Outputs
	PIN Functions
	Version Check

	Debugger
	Breakpoints
	Array Window
	Variable Watch Window

	Tools
	Options
	Editor Settings
	Syntax Highlighting
	Compiler Presetting
	IDE Settings
	Interfaces
	Internet Update
	Terminal
	Tools

	Windows
	Help

	Compiler
	General Features
	External RAM
	Preprocessor
	Predefined Symbols

	Pragma Instructions
	Map File

	CompactC
	Program
	Instructions
	Data Types
	Variables
	Operators
	Arithmetic Operators
	Bit Operators
	Bit-Shift Operators
	In- /Decrement Operators
	Comparison Operators
	Logical Operators

	Control Structures
	Conditional Valuation
	do .. while
	for
	goto
	if .. else
	switch
	while

	Functions
	Tabellen
	Operator Precedence
	Operators
	Reserved Words

	BASIC
	Program
	Instructions
	Data Types
	Variables
	Operators
	Arithmetic Operators
	Bitoperators
	Bit-Shift Operators
	In- /Decrement Operators
	Comparison Operators

	Control Structures
	Do Loop While
	Do While
	For Next
	Goto
	If .. Else
	Select Case

	Functions
	Tables
	Operator Precedence
	Operators
	Reserved Words

	Assembler
	An Example
	Data Access
	Guideline

	ASCII Table

	Libraries
	Internal Functions
	General
	AbsDelay
	Sleep

	Analog-Comparator
	AComp
	AComp Example

	Analog-Digital-Converter
	ADC_Disable
	ADC_Read
	ADC_ReadInt
	ADC_Set
	ADC_SetInt
	ADC_StartInt

	CAN Bus
	CAN Examples
	CAN_Exit
	CAN_GetInfo
	CAN_Init
	CAN_Receive
	CAN_MObSend
	CAN_SetMOb

	Clock
	Clock_GetVal
	Clock_SetDate
	Clock_SetTime

	DCF 77
	DCF_FRAME
	DCF_INIT
	DCF_PULS
	DCF_START
	DCF_SYNC

	Debug
	Msg_WriteChar
	Msg_WriteFloat
	Msg_WriteHex
	Msg_WriteInt
	Msg_WriteText
	Msg_WriteWord

	Direct Access
	DirAcc_Read
	DirAcc_Write

	EEPROM
	EEPROM_Read
	EEPROM_ReadWord
	EEPROM_ReadFloat
	EEPROM_Write
	EEPROM_WriteWord
	EEPROM_WriteFloat

	I2C
	I2C_Init
	I2C_Read_ACK
	I2C_Read_NACK
	I2C_Start
	I2C_Status
	I2C_Stop
	I2C_Write
	I2C Status Table
	I2C Example

	Interrupt
	Ext_IntEnable
	Ext_IntDisable
	Irq_GetCount
	Irq_SetVect
	IRQ Example

	Keyboard
	Key_Init
	Key_Scan
	Key_TranslateKey

	LCD
	LCD_ClearLCD
	LCD_CursorOff
	LCD_CursorOn
	LCD_CursorPos
	LCD_Init
	LCD_Locate
	LCD_SubInit
	LCD_TestBusy
	LCD_WriteChar
	LCD_WriteCTRRegister
	LCD_WriteDataRegister
	LCD_WriteFloat
	LCD_WriteRegister
	LCD_WriteText
	LCD_WriteWord

	Math
	Floating Point
	acos
	asin
	atan
	ceil
	cos
	exp
	fabs
	floor
	ldexp
	ln
	log
	pow
	round
	sin
	sqrt
	tan

	Integer
	rand
	srand

	OneWire
	Onewire_Read
	Onewire_Reset
	Onewire_Write
	Onewire Example

	Port
	Port_DataDir
	Port_DataDirBit
	Port_Read
	Port_ReadBit
	Port_Toggle
	Port_ToggleBit
	Port_Write
	Port_WriteBit
	Port Example

	RC5
	RC5_Init
	RC5_Read
	RC5_Write

	RS232
	Divider
	Serial_Disable
	Serial_Init
	Serial_Init_IRQ
	Serial_IRQ_Info
	Serial_Read
	Serial_ReadExt
	Serial_Write
	Serial_WriteText
	Serial Example
	Serial Example (IRQ)

	SDCard
	SDC Return Values
	SDC_FClose
	SDC_FOpen
	SDC_FRead
	SDC_FSeek
	SDC_FSetDateTime
	SDC_FStat
	SDC_FSync
	SDC_FTruncate
	SDC_FWrite
	SDC_GetFree
	SDC_Init
	SDC_MkDir
	SDC_Rename
	SDC_Unlink
	SD-Card Example

	Servo
	Servo_Init
	Servo_Set
	Servo Example

	SPI
	SPI_Disable
	SPI_Enable
	SPI_Read
	SPI_ReadBuf
	SPI_Write
	SPI_WriteBuf

	Strings
	Str_Comp
	Str_Copy
	Str_Fill
	Str_Isalnum
	Str_Isalpha
	Str_Len
	Str_Printf
	Str_ReadFloat
	Str_ReadInt
	Str_ReadNum
	Str_Substr
	Str_WriteFloat
	Str_WriteInt
	Str_WriteWord
	Str_Printf Example

	Threads
	Thread_Cycles
	Thread_Delay
	Thread_Info
	Thread_Kill
	Thread_Lock
	Thread_MemFree
	Thread_Resume
	Thread_Signal
	Thread_Start
	Thread_Wait
	Thread Example
	Thread Example 2

	Timer
	Event Counter
	Frequency Generation
	Frequency Measurement
	Pulse Width Modulation
	Pulse & Period Measurement
	Timer Functions
	Timer_Disable
	Timer_T0CNT
	Timer_T0FRQ
	Timer_T0GetCNT
	Timer_T0PW
	Timer_T0PWM
	Timer_T0Start
	Timer_T0Stop
	Timer_T0Time
	Timer_T1CNT
	Timer_T1CNT_Int
	Timer_T1FRQ
	Timer_T1FRQX
	Timer_T1GetCNT
	Timer_T1GetPM
	Timer_T1PWA
	Timer_T1PM
	Timer_T1PWB
	Timer_T1PWM
	Timer_T1PWMX
	Timer_T1PWMY
	Timer_T1Start
	Timer_T1Stop
	Timer_T1Time
	Timer_T3CNT
	Timer_T3CNT_Int
	Timer_T3FRQ
	Timer_T3FRQX
	Timer_T3GetCNT
	Timer_T3GetPM
	Timer_T3PWA
	Timer_T3PM
	Timer_T3PWB
	Timer_T3PWM
	Timer_T3PWMX
	Timer_T3PWMY
	Timer_T3Start
	Timer_T3Stop
	Timer_T3Time
	Timer_TickCount

	FAQ

