
© 2011 Conrad Electronic

C-Control Pro
Mega Series

C-Control Pro Mega SeriesI

© 2011 Conrad Electronic

Table of Contents

Part 1 Important Notes 2

... 21 Introduction

... 22 Reading this operating manual

... 23 Handling

... 34 Intended use

... 35 Warranty and Liability

... 46 Service

... 47 Open Source

... 48 History

Part 2 Installation 11

... 111 Applicationboard

... 152 Software

Part 3 Hardware 17

... 171 Firmware

... 192 LCD Matrix

... 193 Mega32 Module

... 223.1 CPU

... 233.2 Pin Assignment

... 253.3 Connection Diagram

... 254 Mega128 Module

... 294.1 CPU

... 304.2 Pin Assignment

... 324.3 Connection Diagram

... 325 Mega128 CAN Module

... 365.1 CPU

... 375.2 Pin Assignment

... 395.3 Connection Diagram

... 396 Mega32 Application Board

... 436.1 Jumper Application Board

... 456.2 Connection Diagram

... 486.3 Component Parts Plan

... 497 Mega128 Application Board

... 527.1 Jumper Application Board

IIInhalt

© 2011 Conrad Electronic

... 557.2 Connection Diagram

... 577.3 Component Parts Plan

... 588 Mega32 Projectboard

... 609 Mega128 Projectboard

Part 4 IDE 64

... 651 Projects

... 651.1 Create Projects

... 651.2 Compile Projects

... 661.3 Project Management

... 671.4 Thread Options

... 681.5 Project Options

... 691.6 Library Management

... 702 Editor

... 722.1 Editor Functions

... 732.2 Print Preview

... 742.3 Keyboard Shortcuts

... 762.4 Regular Expressions

... 763 C-Control Hardware

... 773.1 Start Program

... 783.2 Outputs

... 783.3 PIN Functions

... 793.4 Version Check

... 794 Debugger

... 804.1 Breakpoints

... 814.2 Array Window

... 824.3 Variable Watch Window

... 845 Tools

... 856 Options

... 856.1 Editor Settings

... 866.2 Syntax Highlighting

... 886.3 Compiler Presetting

... 896.4 IDE Settings

... 937 Windows

... 948 Help

Part 5 Compiler 97

... 971 General Features

... 971.1 External RAM

... 971.2 Preprocessor

C-Control Pro Mega SeriesIII

© 2011 Conrad Electronic

... 991.3 Pragma Instructions

... 991.4 Map File

... 1002 CompactC

... 1002.1 Program

... 1012.2 Instructions

... 1032.3 Data Types

... 1042.4 Variables

... 1082.5 Operators

... 1112.6 Control Structures

... 1162.7 Functions

... 1192.8 Tabellen

... 1223 BASIC

... 1223.1 Program

... 1233.2 Instructions

... 1253.3 Data Types

... 1253.4 Variables

... 1293.5 Operators

... 1323.6 Control Structures

... 1373.7 Functions

... 1403.8 Tables

... 1424 Assembler

... 1424.1 An Example

... 1444.2 Data Access

... 1464.3 Guideline

... 1465 ASCII Table

Part 6 Libraries 153

... 1531 Internal Functions

... 1532 General

... 1532.1 AbsDelay

... 1542.2 Sleep

... 1543 Analog-Comparator

... 1543.1 AComp

... 1553.2 AComp Example

... 1564 Analog-Digital-Converter

... 1574.1 ADC_Disable

... 1574.2 ADC_Read

... 1584.3 ADC_ReadInt

... 1584.4 ADC_Set

... 1594.5 ADC_SetInt

IVInhalt

© 2011 Conrad Electronic

... 1604.6 ADC_StartInt

... 1605 CAN Bus

... 1625.1 CAN Examples

... 1635.2 CAN_Exit

... 1635.3 CAN_GetInfo

... 1645.4 CAN_Init

... 1655.5 CAN_Receive

... 1665.6 CAN_MObSend

... 1665.7 CAN_SetMOb

... 1676 Clock

... 1676.1 Clock_GetVal

... 1686.2 Clock_SetDate

... 1686.3 Clock_SetTime

... 1697 DCF 77

... 1707.1 DCF_FRAME

... 1717.2 DCF_INIT

... 1717.3 DCF_PULS

... 1727.4 DCF_START

... 1727.5 DCF_SYNC

... 1728 Debug

... 1738.1 Msg_WriteChar

... 1738.2 Msg_WriteFloat

... 1738.3 Msg_WriteHex

... 1748.4 Msg_WriteInt

... 1748.5 Msg_WriteText

... 1758.6 Msg_WriteWord

... 1759 Direct Access

... 1759.1 DirAcc_Read

... 1769.2 DirAcc_Write

... 17610 EEPROM

... 17610.1 EEPROM_Read

... 17710.2 EEPROM_ReadWord

... 17710.3 EEPROM_ReadFloat

... 17810.4 EEPROM_Write

... 17810.5 EEPROM_WriteWord

... 17910.6 EEPROM_WriteFloat

... 17911 I2C

... 17911.1 I2C_Init

... 18011.2 I2C_Read_ACK

C-Control Pro Mega SeriesV

© 2011 Conrad Electronic

... 18011.3 I2C_Read_NACK

... 18011.4 I2C_Start

... 18111.5 I2C_Status

... 18111.6 I2C_Stop

... 18211.7 I2C_Write

... 18211.8 I2C Status Table

... 18311.9 I2C Example

... 18312 Interrupt

... 18412.1 Ext_IntEnable

... 18512.2 Ext_IntDisable

... 18512.3 Irq_GetCount

... 18612.4 Irq_SetVect

... 18612.5 IRQ Example

... 18713 Keyboard

... 18713.1 Key_Init

... 18713.2 Key_Scan

... 18813.3 Key_TranslateKey

... 18814 LCD

... 18814.1 LCD_ClearLCD

... 18914.2 LCD_CursorOff

... 18914.3 LCD_CursorOn

... 19014.4 LCD_CursorPos

... 19014.5 LCD_Init

... 19114.6 LCD_Locate

... 19114.7 LCD_SubInit

... 19214.8 LCD_TestBusy

... 19214.9 LCD_WriteChar

... 19214.10 LCD_WriteCTRRegister

... 19314.11 LCD_WriteDataRegister

... 19314.12 LCD_WriteFloat

... 19414.13 LCD_WriteRegister

... 19414.14 LCD_WriteText

... 19414.15 LCD_WriteWord

... 19515 Math

... 19515.1 Floating Point

... 20215.2 Integer

... 20316 OneWire

... 20316.1 Onewire_Read

... 20416.2 Onewire_Reset

VIInhalt

© 2011 Conrad Electronic

... 20516.3 Onewire_Write

... 20516.4 Onewire Example

... 20717 Port

... 20717.1 Port_DataDir

... 20817.2 Port_DataDirBit

... 20917.3 Port_Read

... 21017.4 Port_ReadBit

... 21117.5 Port_Toggle

... 21117.6 Port_ToggleBit

... 21217.7 Port_Write

... 21317.8 Port_WriteBit

... 21417.9 Port Example

... 21518 RC5

... 21818.1 RC5_Init

... 21918.2 RC5_Read

... 22018.3 RC5_Write

... 22019 RS232

... 22019.1 Divider

... 22219.2 Serial_Disable

... 22219.3 Serial_Init

... 22319.4 Serial_Init_IRQ

... 22419.5 Serial_IRQ_Info

... 22519.6 Serial_Read

... 22519.7 Serial_ReadExt

... 22619.8 Serial_Write

... 22619.9 Serial_WriteText

... 22719.10 Serial Example

... 22719.11 Serial Example (IRQ)

... 22720 SDCard

... 22920.1 SDC Return Values

... 23020.2 SDC_FClose

... 23020.3 SDC_FOpen

... 23120.4 SDC_FRead

... 23120.5 SDC_FSeek

... 23220.6 SDC_FSetDateTime

... 23220.7 SDC_FStat

... 23320.8 SDC_FSync

... 23420.9 SDC_FTruncate

... 23420.10 SDC_FWrite

C-Control Pro Mega SeriesVII

© 2011 Conrad Electronic

... 23520.11 SDC_GetFree

... 23520.12 SDC_Init

... 23620.13 SDC_MkDir

... 23620.14 SDC_Rename

... 23720.15 SDC_Unlink

... 23720.16 SD-Card Example

... 23821 Servo

... 23921.1 Servo_Init

... 24021.2 Servo_Set

... 24121.3 Servo Example

... 24122 SPI

... 24122.1 SPI_Disable

... 24222.2 SPI_Enable

... 24322.3 SPI_Read

... 24322.4 SPI_ReadBuf

... 24322.5 SPI_Write

... 24422.6 SPI_WriteBuf

... 24423 Strings

... 24423.1 Str_Comp

... 24523.2 Str_Copy

... 24523.3 Str_Fill

... 24623.4 Str_Isalnum

... 24623.5 Str_Isalpha

... 24723.6 Str_Len

... 24723.7 Str_Printf

... 24823.8 Str_ReadFloat

... 24923.9 Str_ReadInt

... 24923.10 Str_ReadNum

... 25023.11 Str_Substr

... 25023.12 Str_WriteFloat

... 25123.13 Str_WriteInt

... 25123.14 Str_WriteWord

... 25223.15 Str_Printf Example

... 25224 Threads

... 25424.1 Thread_Cycles

... 25524.2 Thread_Delay

... 25524.3 Thread_Info

... 25624.4 Thread_Kill

... 25624.5 Thread_Lock

VIIIInhalt

© 2011 Conrad Electronic

... 25724.6 Thread_MemFree

... 25724.7 Thread_Resume

... 25724.8 Thread_Signal

... 25824.9 Thread_Start

... 25824.10 Thread_Wait

... 25924.11 Thread Example

... 25924.12 Thread Example 2

... 26025 Timer

... 26025.1 Event Counter

... 26125.2 Frequency Generation

... 26225.3 Frequency Measurement

... 26225.4 Pulse Width Modulation

... 26325.5 Pulse & Period Measurement

... 26425.6 Timer Functions

... 26525.7 Timer_Disable

... 26525.8 Timer_T0CNT

... 26525.9 Timer_T0FRQ

... 26625.10 Timer_T0GetCNT

... 26725.11 Timer_T0PW

... 26725.12 Timer_T0PWM

... 26825.13 Timer_T0Start

... 26825.14 Timer_T0Stop

... 26925.15 Timer_T0Time

... 27025.16 Timer_T1CNT

... 27025.17 Timer_T1CNT_Int

... 27025.18 Timer_T1FRQ

... 27125.19 Timer_T1FRQX

... 27125.20 Timer_T1GetCNT

... 27225.21 Timer_T1GetPM

... 27225.22 Timer_T1PWA

... 27325.23 Timer_T1PM

... 27325.24 Timer_T1PWB

... 27425.25 Timer_T1PWM

... 27425.26 Timer_T1PWMX

... 27525.27 Timer_T1PWMY

... 27625.28 Timer_T1Start

... 27625.29 Timer_T1Stop

... 27625.30 Timer_T1Time

... 27725.31 Timer_T3CNT

C-Control Pro Mega SeriesIX

© 2011 Conrad Electronic

... 27725.32 Timer_T3CNT_Int

... 27825.33 Timer_T3FRQ

... 27925.34 Timer_T3FRQX

... 27925.35 Timer_T3GetCNT

... 27925.36 Timer_T3GetPM

... 28025.37 Timer_T3PWA

... 28025.38 Timer_T3PM

... 28125.39 Timer_T3PWB

... 28125.40 Timer_T3PWM

... 28225.41 Timer_T3PWMX

... 28325.42 Timer_T3PWMY

... 28325.43 Timer_T3Start

... 28425.44 Timer_T3Stop

... 28425.45 Timer_T3Time

... 28525.46 Timer_TickCount

Part 7 FAQ 287

Part

1

2 C-Control Pro Mega Series

© 2011 Conrad Electronic

Important Notes1

This chapter deals with important information's to warranty, support and operation of the C-Control-
Pro hardware and software.

1.1 Introduction

The C-Control Pro Systems are based on the Atmel Mega 32 and the Atmel Mega 128 RISC
Microcontrollers, resp.. These Microcontrollers are used in large numbers in a broad variety of
devices from entertainment electronics through household appliances to various application facilities
in the industries. There the controller takes charge of important control tasks. C-Control Pro offers
this highly sophisticated technology to solve your controlling problems. You can acquire analog
measuring values and switch positions and provide corresponding switching signals dependent on
these input conditions, e. g. for Relais and servo motors. In conjunction with a DCF-77 radio antenna
C-Control Pro can receive the time with atomic accuracy and thus take over precise time switch
functions. Various hardware interfaces and bus systems allow the cross linking of C-Control Pro with
sensors, actors and other control systems. We want to provide a broad user range with our
technology. From our former work in C-Control service we know that also customers without any
experience in electronics and programming but eager to learn are interested in C-Control. If you
happen to belong to this user group please allow us to give you the following advice:

C-Control Pro is only of limited use for the entry into programming of micro computers and electronic
circuit technique! We presuppose that you have at least a basic knowledge in a higher programming
language such as BASIC, PASCAL, C, C++ or Java. Furthermore we presume that you are used to
operating a PC under one of the Microsoft operating systems (98SE/NT/2000/ME/XP). You should
further be experienced in working with soldering irons, multimeters and electronic components. We
have made every effort to formulate all descriptions as simple as possible. Unfortunately we were not
able to do without the use of technical terms and expressions in an operating manual to the themes
involved here. If need be please see the appropriate technical literature.

1.2 Reading this operating manual

Please read this operating manual thoroughly prior to putting the C-Control Pro Unit into operation.
While several chapters are only of interest for the understanding of the deeper coherence's, others
contain important information's whose non-compliance may lead to malfunctions or even damages.

 Chapters and paragraphs containing important themes are marked by a symbol.

Please read the entire manual prior to putting the unit into operation since it contains important
notes for correct operation. In case of damages to material or personnel caused by improper
handling or non-compliance to this operating manual the warranty claim will expire! We will further
not take liability for consequential damages.

1.3 Handling

The C-Control Pro Unit contains sensitive components. These can be destroyed by electrostatic
discharges! Please observe the general rules on handling electronic components. Please organize
your working bench professionally. Ground your body prior to any work being done, e. g. by
touching a grounded and conducting object (e. g. heating radiator). Avoid touching the connection
pins of the C-Control Pro Unit.

3Important Notes

© 2011 Conrad Electronic

1.4 Intended use

The C-Control Pro Unit is an electronic device in the sense of an integrated circuit. It serves the
programmable controlling of electric and electronic equipment. Construction and operation of this
equipment must be in conformance with the valid European licensing principles (CE).

The C-Control Pro must not be galvanically connected to voltages exceeding the directed Extra
Low Protective Voltage. Coupling to systems with higher voltages must exclusively be performed
by use of components having VDE qualification. In doing so the directed air and leakage paths
must be observed as well as sufficient precautions for protection against touching dangerous
voltages must be taken.

The PCB of the C-Control Pro Unit carries electronic components with high frequency clock
signals and steep pulse slopes. Improper use of the unit may lead to the radiation of electro-
magnetic interference signals. The adoption of proper measures (e. g. the use of chokes, limiting
resistors, blocking capacitors and shielding's) to ensure the observance of legally directed
maximum values lies in the responsibility of the user.

The maximum allowable length of connected wire lines is without additional precautions appr. 0.25
Meters (Exception: Serial Interface). Under influence of strong electro-magnetic alternating fields
or interference pulses the function of the C-Control Pro Unit can be detracted. If need be a reset or
a restart of the system may become necessary.

During connection of external sub-assemblies the maximum admissible current and voltage values of
the particular pins must be observed. The connection of too high a voltage, a voltage of wrong
polarity or an excessive current load may lead to immediate damage of the unit. Please keep the C-
Control Pro Unit away from spray water or condensation dampness. Observe the safe operating
temperature range in Item Technical Data in the attachment.

1.5 Warranty and Liability

For the C-Control Pro Unit Conrad Electronic grants a warranty period of 24 months from the date
of billing. Within this time period faulty units will be replaced free of charge if the fault provable
originates in faulty production or loss on goods in transit.

The software in the operating system of the Microcontroller as well as the PC software on CD-
ROM is shipped in the form as is. Conrad Electronic can not guarantee that the performance
features of this software will satisfy individual requirements and that this software will operate free
of faults and interruptions. Conrad Electronic can further not be held liable for damages occurring
directly by or consequently to the use of the C-Control Pro Unit. The use of the C-Control Pro Unit
in systems directly or indirectly serving medical, health or life saving objectives is not authorized.

In case the C-Control Pro Unit incl. software does not satisfy your demands or if you do not agree
to our warranty and liability conditions you are to make use of our 14 days money back guarantee.
Please return the unit without use marks, in the undamaged original packaging and incl. all
accessories within this time-limit to our address for refund or clearing of the value of goods!

4 C-Control Pro Mega Series

© 2011 Conrad Electronic

1.6 Service

Conrad Electronic provides you with a team of experienced service technicians. If you have any
question with regard to our C-Control Pro Unit you can reach our Technical Service by letter,
telefax or e-mail.

By letter Conrad Electronic SE
Technical Inquiry
Klaus-Conrad-Straße 2
D-92530 Wernberg-Köblitz

Fax-Nr.: 09604 / 40-8848
E-Mail: left webmaster@c-control.de

Please preferably use e-mail communication. If there is a problem possibly provide us with a
sketch of your connection diagram in form of an attached picture file (jpg format) as well as the
program source code reduced to the part referring to your problem (max. 20 lines). Further
information's and current software for download please find on the C-Control homepage under
www.c-control.de.

1.7 Open Source

When C-Control Pro was designed also open source software has come into operation:

ANTLR 2.73 leftleftleftleftleftleft http://www.antlr.org
Inno Setup 5.2.3 leftleftleftleft http://www.jrsoftware.org
GPP (Generic Preprocessor) http://www.nothingisreal.com/gpp
avra-1.2.3a Assembler leftleft http://avra.sourceforge.net/

In accordance with the rules of "LESSER GPL" (www.gnu.org/copyleft/lesser) during installation of
the IDE also the original source code of the avra assembler, the generic pre-processor as well as the
source text of the modified version is supplied, which is used with C-Control Pro. Both source texts
are found in a ZIP file in the "GNU" sub-directory.

1.8 History

Version 2.12 from 01/06/2011

New Features
32-Bit Integer (only Mega128)
new multithreading with time slices
#thread parameter syntax in source
SD-Card support
CAN-Bus Support (only C-Control Pro 128 CAN)
direct access to Flash Arrays
Array Tooltips in Debugger
IDE Style changeable
Vista and Win7 Theme support
ask for transfer at program start option
increased serial speed for module communication

http://www.antlr.org
http://www.jrsoftware.org
http://www.nothingisreal.com/gpp
http://avra.sourceforge.net/

5Important Notes

© 2011 Conrad Electronic

VT100 Emulation for Terminal
rand(), srand() randomize functions

Error Corrections
Documentation update
Translation errors fixed
Floats in tables now work
Corrected negative values in tables
Fixed constant expressions in parentheses
Corrected function calls made in return statements
"#pragma Warn" is now "'pragma Warning"
Wrong editor undo after save fixed
Fixed bug in Serial_IRQ_Info
Fixed bug in serial program transfer
Problem in Servo-Routines corrected
External Interrupt Acknowledge now in correct order
Wrong upper limit at some TimerXTime() functions fixed
Clear all Breakpoints now works every time
Fixed problem crossing 64kb boundary
Fixed stopping program in debugger >64kb code
round() now works correctly
Problem in BASIC For-loops fixed

Version 2.01 from 06/27/2009

New Features
Added Search Function into Editor popupmenu

Error Corrections
Documentation update
Error at "unused Code Optimizer" corrected
Fixed internal handling of data crossing 64kb boundary
Fixed error when starting programs from Tools menu
Corrected translation bugs in Search dialog
Line offset fixed in Project Search
Timeout in I2C Routines
Fixed error message "...tbSetRowCount:new count too small"

Version 2.00 from 05/14/2009

New Features
Assembler Support
Enhanced Search Functions in the Editor
New configurable GUI
Todo List
switchable Compiler Warnings
Program Transfer of Bytecode without Project
extended Program Info
Fast Transfer if Interpreter already on Module
Enhanced Auto-Completion of Keywords and Function Names
Function Parameter help
unused Code Optimizer
Peephole Optimizer

6 C-Control Pro Mega Series

© 2011 Conrad Electronic

Support for predefined Arrays in Flash Memory
Realtime Array Index check
Optimized Array Access
better verification of constant array indices
call functions with string constants
Enter binary numbers with 0b....
Addition und Subtraction of Pointers
Optimized Port OUT, PIN and DDR Access
Direct Atmel Register Access
Formatted String Output with Str_Printf()
convert ASCII strings in numerical values
++/-- for BASIC
Port toggle functions
RC5 Send and Receive Routines
Software Clock (Time & Date) with Quartz correction factor
Servo Routines
mathematical Round
Atmel Mega Sleep Function

Error Corrections
Initialization Timer_T0FRQ corrected
Initialization Timer_T0PWM corrected
Initialization Timer_T1FRQ corrected
Initialization Timer_T1FRQX corrected
Initialization Timer_T1PWM corrected
Initialization Timer_T1PWMX corrected
Initialization Timer_T1PWMXY corrected
Initialization Timer_T3FRQ corrected
Refresh for Array Window corrected
Desktop Reset corrected
Module Reset corrected
Bug in Debugfiles >30000 Bytes corrected
Bug in conditional valuation in CompactC fixed
Bug in Timer_Disable() fixed

Version 1.72 from 10/22/2008

New Features
added SPI functions
RP6 AutoConnect

Error Corrections
improved quality of serial transfers

Version 1.71 from 06/25/2008

New Features
new Editor in IDE
Editor shows all defined function names
Editor supports code folding
Simple serial Terminal
Pulldownmenu to start your own programs (Tool Quickstart)
Syntaxhighlighting of all standard library functions

7Important Notes

© 2011 Conrad Electronic

Configuration of Syntaxhighlighting
Extension of Select .. Case in BASIC
Automatic case correction for keywords and library function names
Simple automatic lookup for keywords and library function names
OneWire Library Functions
Comments of Blocks in BASIC with /* , */
New FTDI driver

Error Corrections
Global For-Loop counter variables in BASIC work now correct
Char variables work now correct with negative numbers
"u" after an integer now defines unsigned number
Project names now can contain special characters
Thread_Wait() now supports thread parameter
return command in CompactC without return parameter was working wrong
Corrected swapped error messages when called functions with pointers
Corrected error message at assignment, when function had no return parameter
Nested switch/Select statements are working now
Very long switch/Select statements are functioning properly now
Better Error recovery when selected COM Port already in use
No longer a crash if very huge amounts of faulty data where transferred over USB or COM Port
"Exit" in BASIC For-Loops is working now
Compiler error corrected in declaration of array variables

Version 1.63 from 12/21/2007

Error Corrections
Documentation update

Version 1.62 from 12/08/2007

New Features
Vista Compatibility

Error Corrections
Brackets are working correctly
The compiler is no longer crashing when variable names are not known
There were sometimes incorrect syntax errors when opening some brace levels and a missing
operand
"Exit" don't worked correctly in BASIC For-Next loops
The array window could only be opened 16 times, even when some array windows were closed
Renamed the Text "Compiler" to "Compiler Defaults" in the Options Menu

Version 1.60 from 03/04/2007

New Features
English language version of IDE - switchable at runtime
English language Compiler messages
English language version of help files and manual
printing of source code from the IDE
Print preview of source code
Thread_Wait() extended with thread parameter
ADC_Set() got a speedup

8 C-Control Pro Mega Series

© 2011 Conrad Electronic

DoubleClock mode can be activated in serial functions

Error Corrections
ExtIntEnable() was only working correct with IRQ 0 and 4
Serial_Init() und Serial_Init_IRQ() got wrongly a byte as divider instead of a word
EPROM_WriteFloat und EEPROM_ReadFloat() sometimes worked incorrect
Thread_Kill() worked erroneous when called from the main thread
read accesses from globally defined floating point arrays were faulty
The second serial interface was not working correctly
EEPROM write accesses that used illegal addresses could overwrite reserved data in
EEPROM
There was a chance with a very low probability that the LCD display content could get
corrupted

Version 1.50 from 11/08/2005

New Features
IDE Support for Mega128
Improved Cache Algorithm during IDE access to Transit Time Data in the Debugger
New Library Routines for Timer 3 (Mega128)
Programs using the extended (>64kb) Address Space (Mega128)
Supporting the external 64kb SRAM
Supporting the external Interrupts 3 - 7 (Mega128)
Routines for the 2. Serial Interface (Mega128)
Mathematical Functions (Mega128)
Display of Memory Volume when Interpreter is started
Internal RAM check for recognition when Global Variables too large for Main Memory
Interner RAM check for recognition when Thread Configuration too large for Main Memory
Transit Time Check if Stack Limits have been violated
Source Files can be moved up and down in the Project Hierarchy
Warning when Strings too long are assigned
On demand the Compiler creates a Map File describing the volume of all Program Variables
New Address model for Global Variables (the same Program runs at different RAM Volumes)
Interrupt Routines for Serial Interface (up to 256 Byte Receiver Buffer / 256 Byte Transmitter
Buffer)
Fixed wired IRQ Routines to allow Periode Measurement of small time intervals
Recursions are now usable without limits
Arrays of any size can now be displayed in a separate Window in the Debugger
Strings (character arrays) are now shown as Tooltip in the Debugger
SPI can be switched off in order to use the pins for I/O
The Serial Interface can be switched off in order to use the pins for I/O
The Hex value is now additionally shown as Tooltip in the Debugger
New Function Thread_MemFree()
Additional EEPROM Routines for Word and Floating Point access
Time Measurement with Timer_TickCount()
#pragma Commands to create Errors or Warnings
Pre-defined Symbol in Pre-Prozessor: __DATE__, __TIME__ __FILE__, __FUNCTION__,
__LINE__
Version Number in Splashscreen
Extended Documentation
Interactive Graphics at "Jumper Application Board" in Help File
New Demo Programs
Ctrl-F1 starts Context Help

9Important Notes

© 2011 Conrad Electronic

Error Corrections
An Error is created if the Return Command is missing at the end of a function
Breakpoint Marks have not always been deleted
Limits at EEPROM Access can now be checked closer (internal overflow seized)
In the Debugger a single step can no longer depose the next command too early

Version 1.39 from 06/09/2005

New Features
BASIC Support
CompactC and BASIC can be mixed in a project
Extended Documentation
Loop Optimizing for For - Next in BASIC
ThreadInfo Function
New Demo Programs

Error Corrections
Compiler does no longer break down at German Umlauts (ä, ö, ü)
Internal Byte Code of command StoreRel32XT corrected
Offset in String Table improved

Version 1.28 from 04/26/2005

Initial Version

Part

2

11Installation

© 2011 Conrad Electronic

Installation2

In this chapter the installation of hardware and software is described.

2.1 Applicationboard

Important Note on Inserting/ Retrieving a Mega Module

For the connection between Module and Application Board high quality connectors have been used
in order to ensure intimate contacts. Mounting and dismounting of a Module should only take place
during power-down condition (switched off voltage) since otherwise damages may occur to
Application Board and/ or Module resp. Because of the high number of contacts (40/ 64 Pins)
considerable force may be necessary to insert/ retrieve the Module. When inserting it must be
ensured that the Module is pressed into the socket evenly, i. e. not out of line. To do this the Module
should be placed onto an even surface. Mount the Module Mega32 in the correct orientation
observing the marking for Pin 1. The label inscription will then point towards the control elements on
the Application Board

12 C-Control Pro Mega Series

© 2011 Conrad Electronic

Mounting Orientation of Module MEGA32

 The connector of Module Mega32 has been designed in such a way that faulty insertion of the
Module is not possible. The dismounting of the Module is performed by carefully lifting it from the
socket by use of a suitable tool. In order to avoid bending the contacts the lifting of the Module
should take place from various sides.

Installation of the USB Drivers

Please connect the Application Board to an appropriate power supply. A Standard 9V/ 250mA Mains
Plug-in Power Supply will be sufficient. The polarity does not matter since it is automatically
corrected by means of diodes. Depending on additionally used components it may later become
necessary to use a power supply with higher output. Establish a connection between the Application
Board and your PC by use of a USB cable. Switch on the Application Board.

 A Windows Operating System prior to Win98 SE ("Second Edition") will supposedly not allow a
reliable USB connection between PC and Application Board. From experience Microsoft’s USB
drivers will only reliably work with all USB devices starting with Win98SE. In such a case it is
recommended to either grade up to a more recent Operating System or use only the serial
connection to the Application Board.
If the Application Board is connected for the first time then there will be no driver for the FTDI chip.
The following window will then be shown under Windows XP.

13Installation

© 2011 Conrad Electronic

From here select "Install software from a list or other source" and click "Next"..

14 C-Control Pro Mega Series

© 2011 Conrad Electronic

Then type in the path to the driver’s directory. If the software has been installed to "C:\Programs" it
will be path "C:\Programs\C-Control-Pro\FTDI USB Driver".

15Installation

© 2011 Conrad Electronic

The message "C-Control Pro USB Device has not passed the Windows Logo Test " will normally
appear. This does not mean that the driver has failed during the Windows Logo Test. It merely
means that the driver has not taken part in the (quite costly) Redmond Test.

Here click "Continue Installation". The USB driver should then be installed after a few seconds.

In the PC software click on IDE in menu Options and select the area Interfaces. Here select the
communication port "USB0".

 The FTDI driver supports 32 bit and 64 bit operating systems. The specific drivers are located in
the "FTDI USB Driver\i386" and "FTDI USB Driver\amd64".

Serial Connection

Due to the slow transmitting speed of the serial interface the USB connection should preferably be
used. If however due to hardware grounds the USB interface is not available then the Bootloader can
be switched into the Serial Mode.

To do this the key SW1 has to be kept pressed during power-up of the Application Board. After this
the Serial Bootloader Mode will be activated.

In the PC software click on IDE in menu Options and select the area Interfaces. Here select the
communication port "COMx", which fits to the PC interface connected to the Application Board.

2.2 Software

When the attached CD-ROM is inserted into the computer the Installer should be automatically
started in order to install the C-Control Pro software. If this is not the case because e. g. the
Autostart Function in Windows is not activated then please manually start the Installer 'C-
ControlSetup.exe' in the main directory of your CD-ROM.

 For the time of software and USB driver installations the user must be registered as
administrator. During normal operation of C-Control Pro this is not necessary.

 In order to maintain consistency of the demo program during installation on top of an existing
installation the old directory Demo Programs will be deleted and replaced by a new one. It is thus
recommended to install other programs outside the C-Control Pro directory.

At the beginning of the installation first select the language in which the installation should take
place. After that you can choose whether you want to install C-Control Pro into the standard path or
whether you want to specify your own target directory. At the end of the installation process you will
be asked if an icon should be created on your desktop.

When the installation process is completed you can choose whether you want to see the "ReadMe"
file, have the shortform introduction displayed or directly start the C-Control Pro design platform.

Part

3

17Hardware

© 2011 Conrad Electronic

Hardware3

This chapter gives a description of the hardware coming into operation with the C-Control Pro series.
The Modules C-Control Pro Mega32 and C-Control Pro Mega128 will be described. Further chapters
will comment on construction and function of the accompanying application boards and LCD
modules as well as the keyboard.

3.1 Firmware

The operating system of C-Control Pro consists of the following components:

Bootloader
Interpreter

Bootloader

The Bootloader is available at any time. It serves the serial or USB communication with the IDE. By
use of command line commands the Interpreter and the user program can be transferred from the PC
to the Atmel Risc Chip. If a program is compiled and transferred to the Mega Chip the current
Interpreter is also transferred at the same time.

 If instead of the USB interface a serial connection should be set up from the IDE to the C-
Control Pro module then the push button SW1 (Port M32:D.2 and M128:E.4 resp. at low level) must
be held pressed during power-up of the module. In this mode any communication will be directed
through the serial interface. This is useful when the module has already been incorporated into the
hardware application and the application board is thus not available. The serial communication
however is considerably slower than the USB connection. In serial mode the USB pins are not used
and are thus available to the user for other tasks.

 Since SW1 initiates the serial Bootloader during module start there should be no signal on Port
M32:D.2 and M128:E.4, resp. during power-up of the application since these ports are also usable
as outputs.

SPI Switch Off (only Mega128)

A signal on the SPI interface during switch on can activate USB communication. In order to avoid
this PortG.4 (LED 2) can be set LOW during switch on. The SPI interface will then not be activated.
The SPI interface can also be manually be switched off by the Interpreter later on using SPI_Disable
().

Interpreter

The Interpreter consists of the following components:

Bytecode Interpreter
Multithreading Support
Interrupt Processing

18 C-Control Pro Mega Series

© 2011 Conrad Electronic

User Functions
RAM and EEPROM Interface

In general the Interpreter processes the bytecode generated by the Compiler. Further most library
functions are integrated into it in order to allow access of the bytecode program to e. g. the hardware
ports. The RAM and EEPROM Interfaces are used by the IDE’s Debugger to get access to the
variables when the Debugger is stopped at any Breakpoint.

Autostart

If no USB interface is connected and if SW1 has not been pressed during power-up in order to reach
the serial Bootloader mode then the Bytecode (if available) is started in the Interpreter. This means
that in case that the module is inserted into a hardware application the mere connection of the
operating voltage will suffice to automatically start the user program.

19Hardware

© 2011 Conrad Electronic

3.2 LCD Matrix

The complete datasheets are on the CD-ROM in the directory "Datasheets".

Page 47

Character modules with built in controllers and Character Generator (CG) ROM & RAM will display 96 ASCII and spe-
cial characters in a dot matrix format. Then first 16 locations are occupied by the character generator RAM. These
locations can be loaded with the user designed symbols and then displayed along with the characters stored in the CG
ROM.

 CHARACTER FONT TABLE

LOWER
 4 BITS

0000 0010 0011 0100 0101 0110 0111 1010 1011 1100 1101 1110 1111

0000
CG RAM

(1)

0001 (2)

0010 (3)

0011 (4)

0100 (5)

0101 (6)

0110 (7)

0111 (8)

1000 (1)

1001 (2)

1010 (3)

1011 (4)

1100 (5)

1101 (6)

1110 (7)

1111 (8)

UPPER
4 BITS

CHARACTER MODULE FONT TABLE (Standard font)

3.3 Mega32 Module

Module Memory

The C-Control Pro Module provides 32kB FLASH, 1kB EEPROM and 2kB SRAM. A supplementary

20 C-Control Pro Mega Series

© 2011 Conrad Electronic

EEPROM with an 8kB memory depth is mounted on the application board. The latter can be
addressed by an I2C interface.

Note: Detailed information can be found in the IC manufacturer’s PDF files on the C-Control Pro
Software CD-ROM.

ADC-Reference Voltage Generation

The Micro Controller is equipped with an analog-to-digital converter with a 10 Bit resolution. This
means that measured voltages can be represented by integral numbers from 0 through 1023. The
reference voltage for the lower limit is GND level, i. e. 0V. The reference voltage for the upper limit
can be selected by the user:

5V Operating Voltage (VCC)
Internal Reference Voltage of 2.56V
External Reference Voltage e. g. 4,096V generated by a Reference Voltage IC.

If x is a digital measuring value then the corresponding voltage value u is computed as follows:

u = x * Reference Voltage / 1024

Clock Generation

Clock generation takes place by a 14.7456MHz Quartz Oscillator. All time dependent actions within
the controller are derived from this clock frequency.

Reset

A Reset initiates the return of the Micro Controller system to a defined starting condition. In gerneral
the C-Control Pro Module knows two reset sources:

Power-On-Reset: is automatically executed after switch on of the operating voltage.
Hardware-Reset: is executed when the Module’s RESET (Pin 9) is pulled to "low" and released
again by e. g. shortly pressing the connected reset key RESET1 (SW3).

A "Brown-Out-Detection" avoids that the Controller can enter undefined conditions in case of
dropping operating voltages.

Digital Ports (PortA, PortB, PortC, PortD)

The C-Control Pro Module provides four digital ports at 8 pins each. To the digital ports it is possible
to connect e. g. pushbuttons with pull-up resistors, digital IC’s, opto couples or driver circuits for
relais. The ports can be addressed either separatly, i.e. pin by pin or byte by byte. Each pin can
either be input or output.

 Never connect two ports directly together which should simultaneously work as outputs!

Digital input pins are high-impedance or wired to internal pull-up resistors and transform an applied
voltage signal into a logical value. For this it is required that the voltage signal is within the limits
defined for TTL and CMOS IC’s high or low levels. During further processing in the program the

21Hardware

© 2011 Conrad Electronic

logical values on the respective input ports are represented as 0 ("low") or 1 ("high"). Pins will take
on the values 0 or 1, Bytes from 0 to 255. Output ports are able to give out digital voltage signals by
use of an internal driver circuit. Connected circuits can draw (at high level) or feed (at low level) a
specific current from or to the ports.

 Pay attention to the maximum admissable load current for a single port or for all ports in total.
Exceeding the maximal values may lead to destruction of the C-Control Pro Module. After a reset
each port is initially configured as input port. By certain commands the direction of data transport
can be toggled.

 It is important to closely study the pin assignment of M32 and M128 prior to programming since
important functions of the program design (e. g. the USB interface of the application board) will apply
to specific ports. If these ports are re-programmed or if the matching jumpers on the application
board are no longer set then it may happen that the design platform can no longer transfer any
programs to the C-Control Pro. Timer inputs and outputs, A/D converter, I2C as well as serial
interface are also connected to various port pins.

PLM-Ports

There are two timers available for PLM. These are Timer_0 with 8 bits and Timer_1 with 16 bits.
They can be used for D/A conversion, to control servo motors in pattern making and to output audio
frequencies. A pulse length modulated signal has a period of N so called "Ticks". The duration of one
tick is the time base. If the output value of a PLM port is set to X then the port will hold high level for
X ticks of one period and will then for the balance of the period drop to low level. For programming of
the PLM channels see Timer.

The PLM channels for Timer_0 and Timer_1 have independent time base and period length. In
applications for pulse width modulated digital to analog conversion the time base and period length
are set once and then only the output value is varied. According to their electrical properties the PLM
ports are digital ports. Please observe the technical boundary conditions for digital ports (max.
current).

 Technical Data Module

Note: Detailed information can be found in the IC manufacturer’s PDF files on the C-Control Pro

22 C-Control Pro Mega Series

© 2011 Conrad Electronic

Software CD-ROM.

All voltage specifications apply to direct current (DC).

Environmental Conditions

Range of admissable ambient temperature 0°C … 70°C

Range of admissable ambient relative humidity 20% … 60%

Power Supply

Range of admissable supply voltage 4,5V … 5,5V

Power reqirement of the module without external
loads

appr. 20mA

Clock

Clock Frequency (Quartz Oscillator) 14.7456MHz

Mechanics

Overall measurements less pins, appr. 53 mm x 21mm x 8 mm

Weight appr. 90g

Pin pitch 2.54mm

Number of pins (two rows) 40

Distance between rows 15.24mm

Ports

Max. adimissable current from digital ports ± 20 mA

Admissable current total on digital ports 200mA

Admissable input voltage on port pins (digital and
A/D)

–0.5V ... 5.5V

Internal pull-up resistors (disconnectable) 20 - 50 kOhm

3.3.1 CPU

Mega32 Overview

The Micro Controller ATmega32 originates from the AVR family by ATMEL. It is a low-power Micro
Controller with Advanced RISC Architecture. In the following see a short summary of its hardware
resources:

131 Powerful Instructions – Most Single-clock Cycle Execution

23Hardware

© 2011 Conrad Electronic

32 x 8 General Purpose Working Registers
Up to 16 MIPS Throughput at 16 MHz

Nonvolatile Program and Data Memories
32K Bytes of In-System Self-Programmable Flash
Endurance: 10,000 Write/Erase Cycles
In-System Programming by On-chip Boot Program

1024 Bytes EEPROM
2K Byte Internal SRAM

Peripheral Features:
Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
Four PWM Channels
8-channel, 10-bit ADC
8 Single-ended Channels
2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
Byte-oriented Two-wire Serial Interface (I2C)
Programmable Serial USART
On-chip Analog Comparator
External and Internal Interrupt Sources
32 Programmable I/O Lines

40-pin DIP
Operating Voltages 4.5 - 5.5V

3.3.2 Pin Assignment

PortA through PortD are for direct pin functions (e. g. Port_WriteBit) counted from 0 through 31, see
"PortBit".

Pin Assignment for Application Board Mega32

M32
PIN

Port Port PortBit Name Layout Remarks

1 PB0 PortB.0 8 T0 Input Timer/Counter0
2 PB1 PortB.1 9 T1 Input Timer/Counter1
3 PB2 PortB.2 10 INT2/AIN0 (+)Analog Comparator, external

Interrupt2
4 PB3 PortB.3 11 OT0/AIN1 (-)Analog Comparator, Output

Timer0
5 PB4 PortB.4 12 SS USB-Communication
6 PB5 PortB.5 13 MOSI USB-Communication
7 PB6 PortB.6 14 MISO USB-Communication
8 PB7 PortB.7 15 SCK USB-Communication

9 RESET
10 VCC
11 GND
12 XTAL2 Oscillator : 14,7456MHz
13 XTAL1 Oscillator : 14,7456MHz

14 PD0 PortD.0 24 RXD EXT-RXD RS232, serial Interface
15 PD1 PortD.1 25 TXD EXT-TXD RS232, serial Interface

24 C-Control Pro Mega Series

© 2011 Conrad Electronic

16 PD2 PortD.2 26 INT0 EXT-T1 SW1 (Taster1); external Interrupt0
17 PD3 PortD.3 27 INT1 EXT-T2 SW2 (Taster2); external Interrupt1
18 PD4 PortD.4 28 OT1B EXT-A1 Output B Timer1
19 PD5 PortD.5 29 OT1A EXT-A2 Output A Timer1
20 PD6 PortD.6 30 ICP LED1 LED; Input Capture Pin for Pulse/

Period Measurement
21 PD7 PortD.7 31 LED2 LED

22 PC0 PortC.0 16 SCL EXT-SCL I2C-Interface
23 PC1 PortC.1 17 SDA EXT-SDA I2C-Interface
24 PC2 PortC.2 18
25 PC3 PortC.3 19
26 PC4 PortC.4 20
27 PC5 PortC.5 21
28 PC6 PortC.6 22
29 PC7 PortC.7 23

30 AVCC
31 GND
32 AREF

33 PA7 PortA.7 7 ADC7 RX_BUSY ADC7 Input; USB-Communication
34 PA6 PortA.6 5 ADC6 TX_REQ ADC6 Input; USB-Communication
35 PA5 PortA.5 5 ADC5 KEY_EN ADC5 Input; LCD/Keyboard

Interface
36 PA4 PortA.4 4 ADC4 LCD_EN ADC4 Input; LCD/Keyboard

Interface
37 PA3 PortA.3 3 ADC3 EXT_SCK ADC3 Input; LCD/Keyboard

Interface
38 PA2 PortA.2 2 ADC2 EXT_DATA ADC2 Input; LCD/Keyboard

Interface
39 PA1 PortA.1 1 ADC1 ADC1 Input
40 PA0 PortA.0 0 ADC0 ADC0 Input

25Hardware

© 2011 Conrad Electronic

3.3.3 Connection Diagram

11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

R
ev

is
io

n
Si

ze A
4

D
at

e:
05

.0
8.

20
04

Sh
ee

t
 o

f
Fi

le
:

C
:\A

lti
um

20
04

\..
\A

tm
eg

a3
2-

D
il4

0.
sc

hd
oc

D
ra

w
n

B
y:

X
1

8

X
2

7

R
ES

ET
4

PD
0

(R
X

D
)

9

PD
1

(T
X

D
)

10

PB
1

(T
1)

41

PB
2

(A
IN

0/
IN

T2
)

42

PB
3

(A
IN

1/
O

C
0)

43

PB
4

(S
S)

44

PB
5

(M
O

SI
)

1

PB
6

(M
IS

O
)

2

PB
7

(S
C

K
)

3

PA
0

(A
D

C
0)

37

PA
1

(A
D

C
1)

36

PA
2

(A
D

C
2)

35

PA
3

(A
D

C
3)

34

PA
4

(A
D

C
4)

33

PA
5

(A
D

C
5)

32

PA
6

(A
D

C
6)

31

PA
7

(A
D

C
7)

30

PC
0

(S
C

L)
19

PC
1

(S
D

A
)

20

PC
2

(T
C

K
)

21

PC
3

(T
M

S)
22

PC
4

(T
D

O
)

23

PC
5

(T
D

I)
24

PC
6

(T
O

SC
1)

25

PC
7

(T
O

SC
2)

26

PD
6

(I
CP

)
15

AVCC
27

PD
2

(I
N

T0
)

11

PD
3

(I
N

T1
)

12

VCC
17

GND
6

PB
0

(X
C

K
/T

0)
40

PD
4

(O
C

1B
)

13

PD
5

(O
C

1A
)

14

GND
18

PD
7

(O
C

2)
16

VCC
5

AGND
28

AREF
29

VCC
38

GND
39

*IC
1

IC
-S

-A
TM

EG
A

32
-1

6A
I

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15
15

16
16

17
17

18
18

19
19

20
20

21
21

22
22

23
23

24
24

25
25

26
26

27
27

28
28

29
29

30
30

31
31

32
32

33
33

34
34

35
35

36
36

37
37

38
38

39
39

40
40

*S1 SO
C

K
E

L-
D

IL
40

PA
0

PA
1

PA
2

PA
3

PA
4

PA
5

PA
6

PA
7

PC
0

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PD
0

PD
1

PD
2

PD
3

PD
4

PD
5

PD
6

PD
7

PB
0

PB
1

PB
2

PB
3

PB
4

PB
5

PB
6

PB
7

G
N

D
G

N
D

G
N

D

*Q
1

Q
-S

-H
C

49
-1

6M
H

Z
*C

1

22
PF

/5
0V

*C
2

22
PF

/5
0V

G
N

D

G
N

D

V
C

C
A

G
N

D

A
V

CC
A

R
EF

*D
1

B
A

S7
0

*C
3

10
N

F/
16

V

*R
1

20
K

V
C

C
V

C
C

G
N

D

R
ES

ET

PB
0

PB
1

PB
2

PB
3

PB
4

PB
5

PB
6

PB
7

PC
0

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PD
0

PD
1

PD
2

PD
3

PD
4

PD
5

PD
6

PD
7

R
ES

ET

PA
0

PA
1

PA
2

PA
3

PA
4

PA
5

PA
6

PA
7

A
R

EF

A
V

CC
G

N
D

V
C

C

G
N

D

*X
1

SC
H

U
T

ZH
A

U
B

E-
D

IL
40

C
C

pr
of

A
T

M
eg

a
32

1A

1/
1

H
ai

nz
lm

ai
er

L1 B
LM

21
A

 1
02

SP
T

C
4

10
0N

F/
50

V

G
N

D

X
1

X
2

X
1

X
2

3.4 Mega128 Module

Pin Layout of the Module

The Mega128 Module is shipped on 4 dual row (2x8) square pins. For hardware application the

26 C-Control Pro Mega Series

© 2011 Conrad Electronic

corresponding socket strips must be organized in the following pitch format:

In the graph the socket strip X1-X4 and then the first two pins of the socket strip can be seen. Pin 1
of strip X1 corresponds to terminal X1_1 (see Mega128 Pinzuordnung).

Module Memory

The C-Control Pro 128 Module provides 128kB FLASH, 4kB EEPROM and 4kB SRAM. A
supplementary EEPROM with an 8kB memory depth and an SRAM with a 64kB memory depth is
mounted on the application board. The EEPROM can be addressed by an I2C interface.

Note: Detailed information can be found in the IC manufacturer’s PDF files on the C-Control Pro
Software CD-ROM.

ADC Reference Voltage Generation

The Micro Controller is equipped with an analog-to-digital converter with a 10 Bit resolution. This
means that measured voltages can be represented by integral numbers from 0 through 1023. The
reference voltage for the lower limit is GND level, i. e. 0V. The reference voltage for the upper limit
can be selected by the user:

5V Operating Voltage (VCC)
Internal Reference Voltage of 2.56V
External Reference Voltage e. g. 4.096V generated by a Reference Voltage IC.

If x is a digital measuring value then the corresponding voltage value u is computed as follows:

u = x * Reference Voltage / 1024

27Hardware

© 2011 Conrad Electronic

Clock Generation

Clock generation takes place by a 14.7456MHz Quartz Oscillator. All time dependent actions within
the controller are derived from this clock frequency.

Reset

A Reset initiates the return of the Micro Controller system to a defined starting condition. In gerneral
the C-Control Pro Module knows two reset sources:

Power-On-Reset: is automatically executed after the operating voltage is switched on.
Hardware-Reset: is executed when the Module’s RESET (X2_3) is pulled to "low" and released
again by e. g. shortly pressing the connected Reset push button RESET1 (SW3).

A "Brown-Out-Detection" avoids that the Controller can enter undefined conditions in case of
dropping operating voltages.

Digital Ports (PortA, PortB, PortC, PortD, PortE, PortF, PortG)

The C-Control Pro Module provides 6 digital ports at 8 pins each and one digital port with 5 pins. To
the digital ports it is possible to connect e. g. push buttons with pull-up resistors, digital IC’s, opto
couples or driver circuits for relais. The ports can be addressed either separatly, i.e. pin by pin or
byte by byte. Each pin can either be input or output.

 Note: Never connect two ports directly together which should simultaneously work as outputs!

Digital input pins are high-impedance or wired to internal pull-up resistors and transform an applied
voltage signal into a logical value. For this it is required that the voltage signal is within the limits
defined for TTL and CMOS ICs high or low levels. During further processing in the program the logical
values on the respective input ports are represented as 0 ("low") oder -1 ("high). Pins will take on the
values 0 or 1, Bytes from 0 to 255. Output ports are able to give out digital voltage signals by use of
an internal driver circuit. Connected circuits can draw (at high level) or feed (at low level) a specific
current from or to the ports

 Pay attention to the Maximum Admissible Load Current for a single port or for all ports in total.
Exceeding the maximal values may lead to destruction of the C-Control Pro Module. After a reset
each port is initially configured as input port. By certain commands the direction of data transport
can be toggled.

 It is important to closely study the pin assignment of M32 and M128 prior to programming since
important functions of the program design (e. g. the USB interface of the application board) will apply
to specific ports. If these ports are re-programmed or if the matching jumpers on the application
board are no longer set then it may happen that the design platform can no longer transfer any
programs to the C-Control Pro. Timer inputs and outputs, A/D converter, I2C as well as serial
interface are also connected to various port pins.

PLM Ports

There are three timers available for PLM. These are Timer_0 with 8 bits and Timer_1 as well as

28 C-Control Pro Mega Series

© 2011 Conrad Electronic

Timer_3 with 16 bits each. They can be used for D/A conversion, to control servo motors in pattern
making and to output audio frequencies. A pulse length modulated signal has a period of N so called
"Ticks". The duration of one tick is the time base. If the output value of a PLM port is set to X then
the port will hold high level for X ticks of one period and will then for the balance of the period drop to
low level. For programming of the PLM channels see Timer.

The PLM channels for Timer_0, Timer_1 and Timer_3 have independent time base and period length.
In applications for pulse width modulated digital to analog conversion the time base and period length
are set once and then only the output value is varied. According to their electrical properties the PLM
ports are digital ports. Please observe the technical boundary conditions for digital ports (max.
current).

Technical Data Module

Note: Detailed information can be found in the IC manufacturer’s PDF files on the C-Control Pro
Software CD-ROM.

All voltage specifications apply to direct current (DC).

Environmental Conditions

Range of admissible ambient temperature 0°C … 70°C

Range of admissible relative ambient humidity 20% … 60%

Power Supply

Range of admissible operating voltage 4.5V … 5.5V

Power consumption of the module without
external loads

appr. 20mA

Clock

Clock Frequency (Quartz Oscillator) 14.7456MHz

Mechanics

Overall measurements less pins, appr. 40 mm x 40mm x 8 mm

Weight appr. 90g

Pin pitch 2.54mm

Number of pins (two rows) 64

29Hardware

© 2011 Conrad Electronic

Ports

Max. admissible current from digital ports ± 20 mA

Admissible current total on digital ports 200mA

Admissible input voltage on port pins (digital and
A/D)

–0.5V ... 5.5V

Internal pull-up resistors (disconnectable) 20 - 50 kOhm

3.4.1 CPU

The Micro Controller Atmega128 originates from the AVR family by ATMEL. It is a low-power Micro
Controller with Advanced RISC Architecture. In the following see a short summary of its hardware
resources:

133 Powerful Instructions – Most Single Clock Cycle Execution
32 x 8 General Purpose Working Registers + Peripheral Control Registers
Fully Static Operation
Up to 16 MIPS Throughput at 16 MHz
On-chip 2-cycle Multiplier

Nonvolatile Program and Data Memories
128K Bytes of In-System Reprogrammable Flash
Endurance: 10,000 Write/Erase Cycles
Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program

True Read-While-Write Operation
4K Bytes EEPROM
Endurance: 100,000 Write/Erase Cycles
4K Bytes Internal SRAM
Up to 64K Bytes Optional External Memory Space
Programming Lock for Software Security
SPI Interface for In-System Programming

JTAG (IEEE std. 1149.1 Compliant) Interface
 Boundary-scan Capabilities According to the JTAG Standard
 Extensive On-chip Debug Support
 Programming of Flash, EEPROM, Fuses and Lock Bits through the JTAG Interface

Peripheral Features
Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode and
Capture Mode
Real Time Counter with Separate Oscillator
Two 8-bit PWM Channels
6 PWM Channels with Programmable Resolution from 2 to 16 Bits
Output Compare Modulator
8-channel, 10-bit ADC
8 Single-ended Channels

30 C-Control Pro Mega Series

© 2011 Conrad Electronic

7 Differential Channels
2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
Byte-oriented Two-wire Serial Interface
Dual Programmable Serial USARTs
Master/Slave SPI Serial Interface
Programmable Watchdog Timer with On-chip Oscillator
On-chip Analog Comparator

Special Microcontroller Features
Power-on Reset and Programmable Brown-out Detection
Internal Calibrated RC Oscillator
External and Internal Interrupt Sources
Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby,
and Extended Standby
Software Selectable Clock Frequency
ATmega103 Compatibility Mode Selected by a Fuse
Global Pull-up Disable

I/O and Packages
53 Programmable I/O Lines
64-lead TQFP and 64-pad MLF

Operating Voltages
2.7 - 5.5V for ATmega128L

4.5 - 5.5V for ATmega128

3.4.2 Pin Assignment

PortA through PortG are for direct pin functions (e. g. Port_WriteBit) counted from 0 through 52, see
"PortBit".

Pin Assignment for Application Board Mega128

Module M128 Port Port
#

PortBit Name1 Name2 Internal Remarks

1 PEN prog. Enable

X1_16 2 PE0 4 32 RXD0 PDI EXT-RXD0 RS232
X1_15 3 PE1 4 33 TXD0 PDO EXT-TXD0 RS232

X1_14 4 PE2 4 34 AIN0 XCK0 Analog Comparator
X1_13 5 PE3 4 35 AIN1 OC3A Analog Comparator

X1_12 6 PE4 4 36 INT4 OC3B EXT-T1 Switch 1
X1_11 7 PE5 4 37 INT5 OC3C TX-REQ SPI_TX_REQ

X1_10 8 PE6 4 38 INT6 T3 EXT-T2 Switch 2 / Input Timer 3
X1_9 9 PE7 4 39 INT7 IC3 EXT-DATA LCD_Interface

X1_8 10 PB0 1 8 SS SPI
X1_7 11 PB1 1 9 SCK SPI
X1_6 12 PB2 1 10 MOSI SPI
X1_5 13 PB3 1 11 MISO SPI

X1_4 14 PB4 1 12 OC0 RX-BUSY SPI_RX_BUSY
X1_3 15 PB5 1 13 OC1A EXT-A1 DAC1
X1_2 16 PB6 1 14 OC1B EXT-A2 DAC2
X1_1 17 PB7 1 15 OC1C OC2 EXT-SCK LCD_Interface

X2_5 18 PG3 6 51 TOSC2 LED1 LED

31Hardware

© 2011 Conrad Electronic

X2_6 19 PG4 6 52 TOSC1 LED2 LED
X2_3 20 RESET

X4_10 21 VCC
X4_12 22 GND

23 XTAL2 Oscillator
24 XTAL1 Oscillator

X2_9 25 PD0 3 24 INT0 SCL EXT-SCL I2C
X2_10 26 PD1 3 25 INT1 SDA EXT-SDA I2C

X2_11 27 PD2 3 26 INT2 RXD1 EXT-RXD1 RS232
X2_12 28 PD3 3 27 INT3 TXD1 EXT-TXD1 RS232
X2_13 29 PD4 3 28 IC1 A16 IC Timer 1, SRAM bank

select
X2_14 30 PD5 3 29 XCK1 LCD-E LCD_Interface
X2_15 31 PD6 3 30 T1 Input Timer 1
X2_16 32 PD7 3 31 T2 KEY-E LCD_Interface / Input

Timer 2
X2_7 33 PG0 6 48 WR WR SRAM
X2_8 34 PG1 6 49 RD RD SRAM

X4_8 35 PC0 2 16 A8 ADR SRAM
X4_7 36 PC1 2 17 A9 ADR SRAM
X4_6 37 PC2 2 18 A10 ADR SRAM
X4_5 38 PC3 2 19 A11 ADR SRAM
X4_4 39 PC4 2 20 A12 ADR SRAM
X4_3 40 PC5 2 21 A13 ADR SRAM
X4_2 41 PC6 2 22 A14 ADR SRAM
X4_1 42 PC7 2 23 A15 ADR SRAM

X2_4 43 PG2 6 50 ALE Latch

X3_16 44 PA7 0 7 AD7 A/D SRAM
X3_15 45 PA6 0 6 AD6 A/D SRAM
X3_14 46 PA5 0 5 AD5 A/D SRAM
X3_13 47 PA4 0 4 AD4 A/D SRAM
X3_12 48 PA3 0 3 AD3 A/D SRAM
X3_11 49 PA2 0 2 AD2 A/D SRAM
X3_10 50 PA1 0 1 AD1 A/D SRAM
X3_9 51 PA0 0 0 AD0 A/D SRAM

X4_10 52 VCC
X4_12 53 GND

X3_8 54 PF7 5 47 ADC7 TDI-JTAG
X3_7 55 PF6 5 46 ADC6 TDO-

JTAG
X3_6 56 PF5 5 45 ADC5 TMS-

JTAG
X3_5 57 PF4 5 44 ADC4 TCK-

JTAG
X3_4 58 PF3 5 43 ADC3
X3_3 59 PF2 5 42 ADC2
X3_2 60 PF1 5 41 ADC1
X3_1 61 PF0 5 40 ADC0

X4_11 62 AREF
X4_12 63 GND
X4_9 64 AVCC

32 C-Control Pro Mega Series

© 2011 Conrad Electronic

3.4.3 Connection Diagram

 The shown connection diagram shows the planned C-Control Pro Module with CAN Bus
interface. This Module has not been built. Inside the C-Control Pro 128 Module is working a Mega
128 processor, and not a AT90CAN128 like shown in this diagram. Therefore there is also no
ATA6660 CAN-Bus Transceiver inside the C-Control Module.

C1 22pF

C2

22pF

C
3

1
0
n
F

C4

100nF

C
5

1
0
n
F

C
6

1
0
0
n
F

D
1

B
A
S
7
0

10mm

Project: MEGA128V2

Sheet 1 of 1

PCB-Design: MEGA128 MODUL 2/3

schäffel electronic gmbh

IC1
PE0

PE1

PE2

PE3

PE4

PE5

PE6

PE7

A
T
9
0
C
A
N
1
2
8

PF0

PF1

PF2

PF3

PF4

PF5

PF6

PF7

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

PD0

PD1

PD2

PD3

PD4

PD5

PD6

PD7

GND

XTAL1

XTAL2

VCC

VCC

GND

PG0

PG1

PC0

PC1

PC2

PC3

PC4

PC5

PC6

PC7

PG2

PG3

PG4

RESET

A
R
E
F

A
V
C
C

G
N
D

Vcc

GNDGND

RXD

TXD

VREFIC2
ATA6660

CANH

CANL

L1

Q
1

1
6
M
H
z

R
1

2
0
k

R
2

6
2
R

R
3

6
2
R

R4

0R

X1

X2

X
3

X4

A
R
E
F

AREF

A
V
C
C

AVCC

GNDGND

GND

GND

GND

GND

GND

GND

Vdd

Vdd

Vdd

Vdd

10

11

12

13

14

15

16

17

18

19

2

20

21

22

23

24

25

26

27

28

29

3

30

31

32

33

34

35

36

37

38

39

4

40

41

42

43

44

45

46

47

48

49

5

50

51

52

53

54

55

56

57

58

59

6

60

61

62 6364

7

8

9

1

2

3

4

5

6

7

8

2
1

1

10

11

12

13

14

15

16

2

3

4

5

6

7

8

9

1

15

14

13

12

11

10

9

2

3

6

5

4

8

7

16

1 1
0

1
1

1
2

1
3

1
4

1
5

1
6

2 3 4 5 6 7 8 9

1

9

10

12

13

14

15

16

2

3

4

5

6

7

8

11

b0805j

b0805j

b
0
8
0
5
j

b0805j

b
0
8
0
5
j

b
0
8
0
5
j b0805_spule

q
u
a
r
z
_
s
m
u
3

b
0
8
0
5
j

b
0
8
0
5
j

b
0
8
0
5
j

b0805j

3.5 Mega128 CAN Module

Pin Layout of the Module

The Mega128 CAN Module is shipped on 4 dual row (2x8) square pins. For hardware application the
corresponding socket strips must be organized in the following pitch format:

33Hardware

© 2011 Conrad Electronic

In the graph the socket strip X1-X4 and then the first two pins of the socket strip can be seen. Pin 1
of strip X1 corresponds to terminal X1_1 (see Mega128 Pinzuordnung).

 To enable the simultaneous access of the CAN Bus and the LCD-Display with the C-Control
Mega128 CAN Module, the connections PD5 and PF7 were exchanged! At the C-Control Mega128
CAN pin PD5 is connected with X3_8 and PF7 is connected with X2_14!

Module Memory

The C-Control Pro 128 Module provides 128kB FLASH, 4kB EEPROM and 4kB SRAM. A
supplementary EEPROM with an 8kB memory depth and an SRAM with a 64kB memory depth is
mounted on the application board. The EEPROM can be addressed by an I2C interface.

Note: Detailed information can be found in the IC manufacturer’s PDF files on the C-Control Pro
Software CD-ROM.

ADC Reference Voltage Generation

The Micro Controller is equipped with an analog-to-digital converter with a 10 Bit resolution. This
means that measured voltages can be represented by integral numbers from 0 through 1023. The
reference voltage for the lower limit is GND level, i. e. 0V. The reference voltage for the upper limit
can be selected by the user:

5V Operating Voltage (VCC)
Internal Reference Voltage of 2.56V
External Reference Voltage e. g. 4.096V generated by a Reference Voltage IC.

If x is a digital measuring value then the corresponding voltage value u is computed as follows:

u = x * Reference Voltage / 1024

34 C-Control Pro Mega Series

© 2011 Conrad Electronic

Clock Generation

Clock generation takes place by a 16MHz Quartz Oscillator. All time dependent actions within the
controller are derived from this clock frequency.

Reset

A Reset initiates the return of the Micro Controller system to a defined starting condition. In gerneral
the C-Control Pro Module knows two reset sources:

Power-On-Reset: is automatically executed after the operating voltage is switched on.
Hardware-Reset: is executed when the Module’s RESET (X2_3) is pulled to "low" and released
again by e. g. shortly pressing the connected Reset push button RESET1 (SW3).

A "Brown-Out-Detection" avoids that the Controller can enter undefined conditions in case of
dropping operating voltages.

Digital Ports (PortA, PortB, PortC, PortD, PortE, PortF, PortG)

The C-Control Pro Module provides 6 digital ports at 8 pins each and one digital port with 5 pins. To
the digital ports it is possible to connect e. g. push buttons with pull-up resistors, digital IC’s, opto
couples or driver circuits for relais. The ports can be addressed either separatly, i.e. pin by pin or
byte by byte. Each pin can either be input or output.

 Note: Never connect two ports directly together which should simultaneously work as outputs!

Digital input pins are high-impedance or wired to internal pull-up resistors and transform an applied
voltage signal into a logical value. For this it is required that the voltage signal is within the limits
defined for TTL and CMOS ICs high or low levels. During further processing in the program the logical
values on the respective input ports are represented as 0 ("low") oder -1 ("high). Pins will take on the
values 0 or 1, Bytes from 0 to 255. Output ports are able to give out digital voltage signals by use of
an internal driver circuit. Connected circuits can draw (at high level) or feed (at low level) a specific
current from or to the ports

 Pay attention to the Maximum Admissible Load Current for a single port or for all ports in total.
Exceeding the maximal values may lead to destruction of the C-Control Pro Module. After a reset
each port is initially configured as input port. By certain commands the direction of data transport
can be toggled.

 It is important to closely study the pin assignment of M32 and M128 prior to programming since
important functions of the program design (e. g. the USB interface of the application board) will apply
to specific ports. If these ports are re-programmed or if the matching jumpers on the application
board are no longer set then it may happen that the design platform can no longer transfer any
programs to the C-Control Pro. Timer inputs and outputs, A/D converter, I2C as well as serial
interface are also connected to various port pins.

PLM Ports

35Hardware

© 2011 Conrad Electronic

There are three timers available for PLM. These are Timer_0 with 8 bits and Timer_1 as well as
Timer_3 with 16 bits each. They can be used for D/A conversion, to control servo motors in pattern
making and to output audio frequencies. A pulse length modulated signal has a period of N so called
"Ticks". The duration of one tick is the time base. If the output value of a PLM port is set to X then
the port will hold high level for X ticks of one period and will then for the balance of the period drop to
low level. For programming of the PLM channels see Timer.

The PLM channels for Timer_0, Timer_1 and Timer_3 have independent time base and period length.
In applications for pulse width modulated digital to analog conversion the time base and period length
are set once and then only the output value is varied. According to their electrical properties the PLM
ports are digital ports. Please observe the technical boundary conditions for digital ports (max.
current).

Technical Data Module

Note: Detailed information can be found in the IC manufacturer’s PDF files on the C-Control Pro
Software CD-ROM.

All voltage specifications apply to direct current (DC).

Environmental Conditions

Range of admissible ambient temperature 0°C … 70°C

Range of admissible relative ambient humidity 20% … 60%

Power Supply

Range of admissible operating voltage 4.5V … 5.5V

Power consumption of the module without
external loads

appr. 20mA

Clock

Clock Frequency (Quartz Oscillator) 14.7456MHz

Mechanics

Overall measurements less pins, appr. 40 mm x 40mm x 8 mm

Weight appr. 90g

Pin pitch 2.54mm

Number of pins (two rows) 64

36 C-Control Pro Mega Series

© 2011 Conrad Electronic

Ports

Max. admissible current from digital ports ± 20 mA

Admissible current total on digital ports 200mA

Admissible input voltage on port pins (digital and
A/D)

–0.5V ... 5.5V

Internal pull-up resistors (disconnectable) 20 - 50 kOhm

3.5.1 CPU

AT90CAN Overview

The Micro Controller AT90CAN originates from the AVR family by ATMEL. It is a low-power Micro
Controller with Advanced RISC Architecture. In the following see a short summary of its hardware
resources:

Advanced RISC Architecture

133 Powerful Instructions – Most Single Clock Cycle Execution

32 x 8 General Purpose Working Registers + Peripheral Control Registers

Fully Static Operation

Up to 16 MIPS Throughput at 16 MHz

On-chip 2-cycle Multiplier

Non volatile Program and Data Memories

32K/64K/128K Bytes of In-System Reprogrammable Flash (AT90CAN32/64/128)

• Endurance: 10,000 Write/Erase Cycles

Optional Boot Code Section with Independent Lock Bits

• Selectable Boot Size: 1K Bytes, 2K Bytes, 4K Bytes or 8K Bytes

• In-System Programming by On-Chip Boot Program (CAN, UART, ...)

• True Read-While-Write Operation

1K/2K/4K Bytes EEPROM (Endurance: 100,000 Write/Erase Cycles) (AT90CAN32/64/128)

2K/4K/4K Bytes Internal SRAM (AT90CAN32/64/128)

Up to 64K Bytes Optional External Memory Space

Programming Lock for Software Security

JTAG (IEEE std. 1149.1 Compliant) Interface

Boundary-scan Capabilities According to the JTAG Standard

Programming Flash (Hardware ISP), EEPROM, Lock & Fuse Bits

Extensive On-chip Debug Support

CAN Controller 2.0A & 2.0B - ISO 16845 Certified (1)

15 Full Message Objects with Separate Identifier Tags and Masks

Transmit, Receive, Automatic Reply and Frame Buffer Receive Modes

1Mbits/s Maximum Transfer Rate at 8 MHz

Time stamping, TTC & Listening Mode (Spying or Autobaud)

Peripheral Features

Programmable Watchdog Timer with On-chip Oscillator

8-bit Synchronous Timer/Counter-0

37Hardware

© 2011 Conrad Electronic

• 10-bit Prescaler

• External Event Counter

• Output Compare or 8-bit PWM Output

8-bit Asynchronous Timer/Counter-2

• 10-bit Prescaler

• External Event Counter

• Output Compare or 8-Bit PWM Output

• 32Khz Oscillator for RTC Operation

Dual 16-bit Synchronous Timer/Counters-1 & 3

• 10-bit Prescaler

• Input Capture with Noise Canceler

• External Event Counter

• 3-Output Compare or 16-Bit PWM Output

• Output Compare Modulation

8-channel, 10-bit SAR ADC

• 8 Single-ended Channels

• 7 Differential Channels

• 2 Differential Channels With Programmable Gain at 1x, 10x, or 200x

On-chip Analog Comparator

Byte-oriented Two-wire Serial Interface

Dual Programmable Serial USART

Master/Slave SPI Serial Interface

• Programming Flash (Hardware ISP)

Special Microcontroller Features

Power-on Reset and Programmable Brown-out Detection

Internal Calibrated RC Oscillator

8 External Interrupt Sources

5 Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down & Standby

Software Selectable Clock Frequency

Global Pull-up Disable

I/O and Packages

53 Programmable I/O Lines

64-lead TQFP and 64-lead QFN

Operating Voltages: 2.7 - 5.5V

Operating temperature: Industrial (-40°C to +85°C)

Maximum Frequency: 8 MHz at 2.7V, 16 MHz at 4.5V

3.5.2 Pin Assignment

PortA through PortG are for direct pin functions (e. g. Port_WriteBit) counted from 0 through 52, see
"PortBit".

 To enable the simultaneous access of the CAN Bus and the LCD-Display with the C-Control
Mega128 CAN Module, the connections PD5 and PF7 were exchanged! At the C-Control Mega128
CAN pin PD5 is connected with X3_8 and PF7 is connected with X2_14!

38 C-Control Pro Mega Series

© 2011 Conrad Electronic

Pin Assignment for Application Board Mega128 CAN

Module M128 Port Port
#

PortBit Name1 Name2 Internal Remarks

1 PEN prog. Enable

X1_16 2 PE0 4 32 RXD0 PDI EXT-RXD0 RS232
X1_15 3 PE1 4 33 TXD0 PDO EXT-TXD0 RS232

X1_14 4 PE2 4 34 AIN0 XCK0 Analog Comparator
X1_13 5 PE3 4 35 AIN1 OC3A Analog Comparator

X1_12 6 PE4 4 36 INT4 OC3B EXT-T1 Switch 1
X1_11 7 PE5 4 37 INT5 OC3C TX-REQ SPI_TX_REQ

X1_10 8 PE6 4 38 INT6 T3 EXT-T2 Switch 2 / Input Timer 3
X1_9 9 PE7 4 39 INT7 IC3 EXT-DATA LCD_Interface

X1_8 10 PB0 1 8 SS SPI
X1_7 11 PB1 1 9 SCK SPI
X1_6 12 PB2 1 10 MOSI SPI
X1_5 13 PB3 1 11 MISO SPI

X1_4 14 PB4 1 12 OC0 RX-BUSY SPI_RX_BUSY
X1_3 15 PB5 1 13 OC1A EXT-A1 DAC1
X1_2 16 PB6 1 14 OC1B EXT-A2 DAC2
X1_1 17 PB7 1 15 OC1C OC2 EXT-SCK LCD_Interface

X2_5 18 PG3 6 51 TOSC2 LED1 LED
X2_6 19 PG4 6 52 TOSC1 LED2 LED
X2_3 20 RESET

X4_10 21 VCC
X4_12 22 GND

23 XTAL2 Oscillator
24 XTAL1 Oscillator

X2_9 25 PD0 3 24 INT0 SCL EXT-SCL I2C
X2_10 26 PD1 3 25 INT1 SDA EXT-SDA I2C

X2_11 27 PD2 3 26 INT2 RXD1 EXT-RXD1 RS232
X2_12 28 PD3 3 27 INT3 TXD1 EXT-TXD1 RS232
X2_13 29 PD4 3 28 IC1 A16 IC Timer 1, SRAM bank

select
X3_8 30 PD5 3 29 XCK1 LCD-E LCD_Interface

X2_15 31 PD6 3 30 T1 Input Timer 1
X2_16 32 PD7 3 31 T2 KEY-E LCD_Interface / Input

Timer 2
X2_7 33 PG0 6 48 WR WR SRAM
X2_8 34 PG1 6 49 RD RD SRAM

X4_8 35 PC0 2 16 A8 ADR SRAM
X4_7 36 PC1 2 17 A9 ADR SRAM
X4_6 37 PC2 2 18 A10 ADR SRAM
X4_5 38 PC3 2 19 A11 ADR SRAM
X4_4 39 PC4 2 20 A12 ADR SRAM
X4_3 40 PC5 2 21 A13 ADR SRAM
X4_2 41 PC6 2 22 A14 ADR SRAM
X4_1 42 PC7 2 23 A15 ADR SRAM

X2_4 43 PG2 6 50 ALE Latch

X3_16 44 PA7 0 7 AD7 A/D SRAM
X3_15 45 PA6 0 6 AD6 A/D SRAM
X3_14 46 PA5 0 5 AD5 A/D SRAM

39Hardware

© 2011 Conrad Electronic

X3_13 47 PA4 0 4 AD4 A/D SRAM
X3_12 48 PA3 0 3 AD3 A/D SRAM
X3_11 49 PA2 0 2 AD2 A/D SRAM
X3_10 50 PA1 0 1 AD1 A/D SRAM
X3_9 51 PA0 0 0 AD0 A/D SRAM

X4_10 52 VCC
X4_12 53 GND

X2_14 54 PF7 5 47 ADC7 TDI-JTAG in CAN Modul exchanged
with X3_8

X3_7 55 PF6 5 46 ADC6 TDO-
JTAG

X3_6 56 PF5 5 45 ADC5 TMS-
JTAG

X3_5 57 PF4 5 44 ADC4 TCK-
JTAG

X3_4 58 PF3 5 43 ADC3
X3_3 59 PF2 5 42 ADC2
X3_2 60 PF1 5 41 ADC1
X3_1 61 PF0 5 40 ADC0

X4_11 62 AREF
X4_12 63 GND
X4_9 64 AVCC

3.5.3 Connection Diagram

 The one pictured diagram shows the new C-Control Pro Mega128 CAN module with CAN bus.

3.6 Mega32 Application Board

USB

The application board provides a USB interface for the program’s loading and debugging. Because of
the high data rate of this interface data transmission times are considerably shorter compared to the
serial interface. Communication takes place through a USB Controller by FTDI and an AVR Mega8
Controller. The Mega8 provides its own Reset push button (SW5). During USB operation the status
of the interface is indicated by two light emitting diodes (LD4 red, LD5 green). When only the green
LED lights up the USB interface is ready for operation. During data transmission both LED’s will light
up. This also applies to the Debug mode. Flashing of the red LED indicates an error condition. Is a
program started in the Interpreter, the red LED is turned on during the runtime. For USB
communication the SPI interface of Mega32 is used (PortB.4 through PortB.7, PortA.6, PortA.7),
which must be connected by their respective jumpers.

Note: Detailed information on the Mega32 can be found in the IC manufacturer’s PDF files on the C-
Control Pro Software CD-ROM.

40 C-Control Pro Mega Series

© 2011 Conrad Electronic

On-Off Switch

The switch SW4 is located on the front of the application board and serves the power-up (On) or
power-down (Off) of the voltage supply.

Light Emitting Diodes (LED)

There are 5 light emitting diodes (LEDs). The LD3 (green) is located on the front below the DC
terminals and lights up when supply voltage is applied. LD4 and LD5 indicate the status of the USB
interface (see Section USB). The green LEDs LD1 and LD2 are located next to the four push
buttons and are freely available to the user. They are connected to VCC through a dropping resistor.
By means of jumpers LD1 can be connected to PortD.6 and LD2 to PortD.7. The LEDs will light up
when the corresponding pin port is low (GND).

Push Buttons

There are four push buttons provided for. SW3 (RESET1) will initiate a reset with Mega32 while SW3
(RESET2) will do the same with Mega8. The push buttons SW1 and SW2 are freely available to the
user. Through jumpers SW1 can be connected to PortD.2 and accordingly SW2 to PortD.3. There is
the possibility to connect switches SW1/2 to either GND or VCC. The possibilities to choose from
are determined by JP1 and JP2 resp. In order to have a defined level at the input port while the push
button is open the corresponding pull-up should be switched on (see Section Digitalports).

 Pressing SW1 during power-up of the board will activate the Serial Bootloader Mode.

LCD

An LCD module can be plugged onto the application board. It displays 2 lines at 8 characters each.
In general also differently organized displays can be operated through this interface. Each character
consists of a monochrome matrix of 5x7 pixels. A flashing cursor below any one of the characters
will indicate the current output position. The operating system provides a simple software interface
for output on the display. This display is connected to connector X14 (16 poles, double row). By
means of a mechanical protection a faulty connection and thus the confusing of poles is avoided.

The LCD module used is of type Hantronix HDM08216L-3. Further information can be found on the
Hantronix Webseite http://www.hantronix.com and in the data sheet list on the CD-ROM.

The display is operated in the 4-Bit data mode. Data bits are set to the EXT-Data output, and then
clocked into the 74HC164 shift register with triggering EXT-SCK. When LCD-E is set, the 4 Bits are
applied to the display.

LCD Contrast (LCD ADJ)

Direct frontal view will allow best readability of the LCD characters. If necessary the contrast must be
trivially re-adjusted. The contrast can be adjusted by means of potentiometer PT1.

http://www.hantronix.com

41Hardware

© 2011 Conrad Electronic

Keyboard

For user inputs a 12 character keyboard (0..9,*,#) is provided (X15: 13 pole connector). The keyboard
is organized 1 out of 12, i. e. there is one line assigned to each key. The keyboard information is
read-in serially through a shift register. If no keyboard is used the 12 inputs can be used as
additional digital inputs. The keyboard uses a 13 pole terminal (single row) and is plugged to X15 in
such a way that the keys will point towards the application board.

With activating the PL (parallel load - KEY-E) input of the 74HC165 all 12 keyboard wires are
transferred in the 74HC165 shift register. After that all information bits are latched to Q7 with
triggering of CP (clock input - EXT-SCK). There they can be read with the EXT-Data Port. Since one
74HC165 holds only 8 Bit information, Q7 of the 1st 74HC165 is connected with DS of the 2nd
74HC165.

I2C Interface

Through this interface serial data can be transmitted at high speed. To do this only two signal lines
are necessary. Data transmission takes place according to the I2C protocol. To effectively use this
interface special functions are provided (see Software Description I2C).

 I2C SCL I2C Bus Clock Line PortC.0

 I2C SDA I2C Bus Data Line PortC.1

Power Supply (POWER, 5 Volts, GND)

Power is provided to the application board by means of a 9V/ 250mA Mains Plug-in Power Supply.
Depending on additionally used components it may later become necessary to use a power supply
with higher power rating. A fixed voltage control generates an internally stabilized 5V supply voltage.
This voltage is provided to all circuit components on the application board. Due to the power reserve
of the Plug-In Power Supply this voltage can also be used to power external ICs.

 Please observe the Maximum Drawable Current. Exceeding this current may lead to immediate
destruction! Because of the relativelly high current consumption of the application board in the
vicinity of 125mA it is not recommended for use in devices consistently battery operated. Please see
the note on short time breakdowns of the power supply (see Reset Characteristics).

 If you turn the application board to a position where the interface connectors (USB and serial)
show to the upper side, the leftmost column on the breadboard is GND and the rightmost column is
VCC.

Serial Interfaces

The Micro Controller Atmega32 contains in its hardware an asynchronous serial interface according
to RS232 standards. The format (Data Bits, Parity Bit, Stop Bit) can be determined during
initialization of the interface. The application board contains a high value level conversion IC to
transform the digital bit streams to Non Return Zero Signals in accordance with the RS232
standards (positive voltage for low bits, negative voltage for high bits). The level conversion IC makes
use of an improved protection against voltage transients. Voltage transients can in electro-
magnetically loaded surroundings (e. g. in industrial applications) be induced in the interface cables
and thus destroy connected electrical circuits. By means of jumpers the data lines RxD and TxD
can be connected to the Controller PortD.0 and PortD.1. During quiescent condition (no active data

42 C-Control Pro Mega Series

© 2011 Conrad Electronic

transmission) a negative voltage of several volts can be measured on Pin TxD against GND. RxD is
of high impedance. The 9 pole SUB-D socket of the application board carries RxD on Pin 3 and TxD
on Pin 2. Pin 5 is the GND connection. No handshake signals are being used for serial data
transmission.

The cable with connection to the NRZ Pins TxD, RxD and RTS may have a length of up to 10
meters. It is recommended to use shielded standard cables. When using longer lines or non-
shielded cables interferences may detract correct data transmission. Only use cables of which the
pin assignments are known.

 Never connect the serial transmission outputs of two devices directly together! Transmission
outputs can usually be identified by their negative output voltage in quiescent condition.

Testing Interfaces

The 4 pole pin strip X16 is to be used for testing purposes only and will not necessarily be armed
with components of any kind on every application board. For the user this pin strip is of no
importance.

One further testing interface is the 6 pole pin strip (two rows at 3 pins each) at JP4. This pin strip too
is only meant for internal use and may likely no longer be fitted with components in future board
series.

Technical Data Application Board

Note: Detailed information's can be found in the IC manufacturer’s PDF files on the C-Control Pro
Software CD-ROM.
All voltage specifications are referring to direct current (DC).

Mechanics

43Hardware

© 2011 Conrad Electronic

Overall measurements, appr. 160 mm x 100 mm

Pin pitch wiring field 2.54 mm

Environmental Conditions

Range of admissible ambient temperature 0°C … 70°C

Range of admissible relative ambient humidity 20% … 60%

Power Supply

Range of admissibly operating voltage 8V … 24V

Power consumption without external loads appr. 125mA

Max. admissibly permanent current from a
stabilized 5V power supply

200mA

3.6.1 Jumper Application Board

Jumper

By use of jumpers certain options can be selected. This applies to several ports which are provided
with special functions (see Pin Assignment Table for M32). E. g. the serial interface is relized
through Pins PortD.0 and PortD.1. If the serial interface is not being used then the corresponding
jumpers can be removed and these pins will then be available for other functions. Besides the port
jumpers there are additional jumpers which are described in the following.

Ports A through D

The ports available with the Mega32 Module are inscribed in this graph. Here the right side is
connected to the module while the left side connects to the components of the application board. If
any jumper is pulled then the connection to the application board is suspended. This may lead to
obstructions of USB, RS232, etc. on the board.

JP1 and JP2

These jumpers are assigned to push buttons SW1 and SW2. There is the possibility to operate the
push button against both GND or VCC. In the basic setting the push buttons are switching to GND.

44 C-Control Pro Mega Series

© 2011 Conrad Electronic

Jumperpositions at delivery

JP4

JP4 serves to toggle the operating voltage (Mains Plug-In Power Supply or USB). The application
board should be operated using Plug-In Power Supply and voltage control (Shipping Condition). The
maximum current to be drawn from the USB interface is lower than from the Plug-In Power Supply.
Exceeding this current can lead to damage on the USB interface of the computer.

JP6

When using the displays the LED back lighting can be switched off by use of JP6.

PAD3

PAD3 (to the right of the module, below the blue inscription) is required as ADC_VREF_EXT for
functions ADC_Set and ADC_SetInt.

45Hardware

© 2011 Conrad Electronic

3.6.2 Connection Diagram

Ti
tle

N
um

be
r

R
ev

is
io

n
Si

ze A
3

D
at

e:
01

.1
2.

20
04

Sh
ee

t
 o

f
Fi

le
:

C
:\A

lti
um

20
04

\..
\B

oa
rd

.s
ch

D
ra

w
n

B
y:

14
23

SW
3

SW
-D

-B
-6

81
0

G
N

D

R
ES

ET

+

C
12

10
0U

F/
35

V
C

14
10

0N
F/

50
V

C
15

10
0N

F/
50

V

V
IN

1

GND
2V

O
U

T
3

IC
3

LM
78

M
05

+
C

13
10

U
F/

35
V

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

1 2 3

X
11

N
G

-D
C

10
A

G
N

D

D
1

1N
40

07
D

2
1N

40
07

D
3

1N
40

07
D

4
1N

40
07

C
5

10
0N

F/
50

V

C
3

10
0N

F/
50

V
C

2
10

0N
F/

50
V

G
N

D

V
C

C
C

1

10
0N

F/
50

V

G
N

D

TX
D

R
X

D

EX
T-

TX
D

EX
T-

R
X

DC
4

10
0N

F/
50

V

G
N

D

R
X

D

TX
D

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15
15

16
16

17
17

18
18

19
19

20
20

21
21

22
22

23
23

24
24

25
25

26
26

27
27

28
28

29
29

30
30

31
31

32
32

33
33

34
34

35
35

36
36

37
37

38
38

39
39

40
40

S1 SO
C

K
E

L-
D

IL
40

PD
0

PD
1

PD
2

PD
3

PD
4

PD
5

PD
6

PD
7

PC
0

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PA
0

PA
1

PA
2

PA
3

PA
4

PA
5

PA
6

PA
7

PB
0

PB
1

PB
2

PB
3

PB
4

PB
5

PB
6

PB
7

R
ES

ET

G
N

D

V
C

C
V

C
C

LD
1

LD
2

LE
D

1
LE

D
2

LE
D

1
LE

D
2

PD
0

PD
1

PD
2

PD
3

PD
4

PD
5

PD
6

PD
7

PC
0

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PB
0

PB
1

PB
2

PB
3

PB
4

PB
5

PB
6

PB
7

PA
0

PA
1

PA
2

PA
3

PA
4

PA
5

PA
6

PA
7

1 32

JP
4

JU
M

PE
R

 3

V
C

C
V

U
SB

V
R

EG

G
N

D

A
R

EF

X
1

X
2

V
C

C

V
C

C LD
3

G
N

D

1
4

2
3

SW
2

SW
-D

-B
-6

81
0

G
N

D
13 2

JP
2

JU
M

PE
R

 3

V
C

C H
1

M
-H

O
LE

-3
.5

H
2

M
-H

O
LE

-3
.5

H
3

M
-H

O
LE

-3
.5

H
4

M
-H

O
LE

-3
.5

V
IN

V
+

2
V

-
6

C
1+

1

C
1-

3
C

2-
5

T1
IN

11

R
1O

U
T

12

T2
IN

10

R
2O

U
T

9
R

2I
N

8

T2
O

U
T

7

R
1I

N
13

T1
O

U
T

14

C
2+

4

VCC
16

GND
15

IC
1

M
A

X
20

2

V
C

C

C
9

10
0N

F/
50

V

G
N

D

V
C

C

C
6

10
0N

F/
50

V

G
N

D

V
C

C

G
N

D

A
R

EF

1
4

2
3

SW
1

SW
-D

-B
-6

81
0

G
N

D
13 2

JP
1

JU
M

PE
R

 3

V
C

C

EX
T-

D
A

TA
EX

T-
SC

K
LC

D
-E

K
E

Y
-E

U
_D

is
pK

ey
D

is
pK

ey
.sc

h

VCC
8

GND
4

SC
L

6

SD
A

5

A
0

1

A
1

2

A
2

3

W
P

7

IC
2

A
T

24
C6

4A
N

V
C

C

G
N

D

EX
T-

SC
L

EX
T-

SD
A

G
N

D

EX
T-

TX
D

EX
T-

R
X

D

R
4

10
K

R
5

10
K

C
10

10
N

F/
50

V
C

11
10

N
F/

50
V

A
N

A
1

A
N

A
2

G
N

D
G

N
D

EX
T-

A
1

EX
T-

A
2

EX
T-

A
1

EX
T-

A
2

21 3 4 5 6 7 8

X
5

21 3 4 5 6 7 8

X
2 21 3 4 5 6 7 8

X
3 21 3 4 5 6 7 8

X
4 21 3 4 5 6 7 8

X
6

21 3 4

X
10 21

X
9

EX
T-

T1
EX

T-
T2

EX
T-

T1

EX
T-

T2

EX
T-

SC
L

EX
T-

SD
A

SC
K

M
IS

O
M

O
SI

SS
-

R
X

-B
U

SY
TX

-R
E

Q

SC
K

M
IS

O
M

O
SI

SS
-

R
X

-B
U

SY
TX

-R
E

Q

EX
T-

D
A

TA
EX

T-
SC

K
LC

D
-E

K
E

Y
-E

EX
T-

D
A

TA
EX

T-
SC

K
LC

D
-E

K
E

Y
-E

PA
D

1

PA
D

2

TX
-R

E
Q

R
X

-B
U

SY
SS

-
M

O
SI

M
IS

O
SC

K

U
_S

pi
U

sb
Sp

iU
sb

.S
ch

L1

B
LM

21
A

 1
02

SP
T

C
32

10
0N

F/
50

V

G
N

D

C
7

10
N

F/
50

V

A
V

C
C

PA
D

3

A
R

EF

R
29

4K
7

R
28

4K
7

V
C

C
V

C
C

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

A
19

A
20

A
21

A
22

A
23

A
24

A
25

A
26

A
27

A
28

A
29

A
30

A
31

A
32

*X
1A

S-
V

G
64

-A
B

C

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

C
14

C
15

C
16

C
17

C
18

C
19

C
20

C
21

C
22

C
23

C
24

C
25

C
26

C
27

C
28

C
29

C
30

C
31

C
32

X
1C

S-
V

G
64

-A
B

C

31 5

2 4 6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50
51

52
53

54
55

56
57

58
59

60
61

62
63

64

*X
17

S-
B

SL
-G

G
-3

2X
2

A
pp

lic
at

io
n

B
oa

rd

A
T

M
E

G
A

 3
2

2A

Pi
xn

er
1/

3

R
1

39
0E

R
2

39
0E

R
3

39
0E

21 3 4 5 6

X
7

5 9 4 8 3 7 2 6 1

JP
5

SU
B

-D
9-

A
G

-F
EM

A
LE

SW
4

TL
36

W
00

00
50

46 C-Control Pro Mega Series

© 2011 Conrad Electronic

Ti
tle

N
um

be
r

R
ev

is
io

n
Si

ze A
4

D
at

e:
01

.1
2.

20
04

Sh
ee

t
 o

f
Fi

le
:

C
:\A

lti
um

20
04

\..
\D

is
pK

ey
.s

ch
D

ra
w

n
B

y:

PT
1

10
K

/0
.5

W

T1 B
C

84
6C

V
C

C

LC
D

-B
L

LC
D

-D
7

LC
D

-D
5

G
N

D

V
C

C LC
D

-R
S

LC
D

-E

G
N

D
V

C
C

LC
D

-R
W

LC
D

-D
4

LC
D

-D
6

R
25

4K
7

C
28

10
0N

F/
50

V

V
C

C

G
N

D

R
24

10
E

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

X
14

S-
ST

W
-G

-8
X

2

D
SA

1
D

0
3

D
1

4

D
2

5

D
3

6

D
4

10

D
5

11

D
6

12

D
7

13

C
P

8

M
R

9

VCC
14

GND
7

D
SB

2

IC
7

74
H

C
16

4

D
S

10

D
0

11

D
1

12

D
2

13

D
3

14

D
4

3

D
5

4

D
6

5

D
7

6

C
P

2

C
E

15

PL
1

Q
7

9

Q
7

7

VCC
16

GND
8

IC
8

74
H

C
16

5

D
S

10

D
0

11

D
1

12

D
2

13

D
3

14

D
4

3

D
5

4

D
6

5

D
7

6

C
P

2

C
E

15

PL
1

Q
7

9

Q
7

7

VCC
16

GND
8

IC
9

74
H

C
16

5

R
20

1K R
21

1K R
22

1K

LC
D

-D
4

LC
D

-D
5

LC
D

-D
6

LC
D

-R
W

LC
D

-R
S

LC
D

-D
7

V
C

C
V

C
C

V
C

C

V
C

C

G
N

D

G
N

D

G
N

D

21 3 4 5 6 7 8 9 10 11 12 13

X
15

13
X

1

G
N

D

K
E

Y
01

K
E

Y
02

K
E

Y
03

K
E

Y
04

K
E

Y
05

K
E

Y
06

K
E

Y
07

K
E

Y
08

K
E

Y
09

K
E

Y
10

K
E

Y
11

K
E

Y
12

V
C

C

K
E

Y
01

K
E

Y
02

K
E

Y
03

K
E

Y
04

K
E

Y
05

K
E

Y
06

K
E

Y
07

K
E

Y
08

K
E

Y
09

K
E

Y
10

K
E

Y
11

K
E

Y
12

R
23

1K

EX
T-

SC
K

EX
T-

D
A

TA

LC
D

-E

K
E

Y
-E

G
N

D

G
N

D

C
29

10
0N

F/
50

V

V
C

C

G
N

D

C
30

10
0N

F/
50

V

V
C

C

G
N

D

C
31

10
0N

F/
50

V

V
C

C

G
N

D

EX
T-

D
A

TA

EX
T-

SC
K

LC
D

-E

K
E

Y
-E

12

JP
6

JU
M

PE
R

2

G
N

D

A
pp

lic
at

io
n

Bo
ar

d

A
T

M
E

G
A

 3
2

2A

Pi
xn

er
2/

3

R
30

4K
7

G
N

D

R
31

4K
7

G
N

D

R
32

4K
7

G
N

D

R
33

4K
7

G
N

D

R
34

4K
7

G
N

D

R
35

4K
7

G
N

D

R
36

4K
7

G
N

D

R
37

4K
7

G
N

D

R
38

4K
7

G
N

D

R
39

4K
7

G
N

D

R
40

4K
7

G
N

D

R
41

4K
7

G
N

D

K
E

Y
01

K
E

Y
04

K
E

Y
05

K
E

Y
07

K
E

Y
08

K
E

Y
10

K
E

Y
11

K
E

Y
12

K
E

Y
02

K
E

Y
03

K
E

Y
06

K
E

Y
09

47Hardware

© 2011 Conrad Electronic

Ti
tle

N
um

be
r

R
ev

is
io

n
Si

ze A
4

D
at

e:
01

.1
2.

20
04

Sh
ee

t
 o

f
Fi

le
:

C
:\A

lti
um

20
04

\..
\S

pi
U

sb
.S

ch
D

ra
w

n
B

y:

21 3 4 5

X
12

D
-U

SB
-B

-6
17

29

X
1/

PB
6

7

X
2/

PB
7

8

R
ES

ET
/P

C
6

29

PD
0

(R
X

D
)

30

PD
1

(T
X

D
)

31

PB
1

(O
C

1A
)

13

PB
2

(O
C

1B
/S

S)
14

PB
3

(M
O

SI
/O

C2
)

15

PB
4

(M
IS

O
)

16

PB
5

(S
C

K
)

17

PC
0

(A
D

C
0)

23

PC
1

(A
D

C
1)

24

PC
2

(A
D

C
2)

25

PC
3

(A
D

C
3)

26

PC
4

(A
D

C
4/

SD
A

)
27

PC
5

(A
D

C
5/

SC
L)

28

A
V

CC
18

PD
2

(I
N

T0
)

32

GND
3

PB
0

(I
C

P)
12

GND
5

VCC
6

A
G

N
D

21

A
R

EF
20

VCC
4

A
D

C6
19

PD
3

(I
N

T1
)

1

PD
4

(X
C

K
/T

0)
2

PD
5

(T
1)

9

PD
6

(A
IN

0)
10

PD
7

(A
IN

1)
11

A
D

C7
22

IC
5

A
T

M
E

G
A

8L
-8

A
C

3V
3O

U
T

6

U
SB

D
M

8

U
SB

D
P

7

R
ST

O
U

T
5

R
ES

ET
4

X
T

IN
27

X
T

O
U

T
28

EE
CS

32

EE
SK

1

EE
D

A
T

A
2

TE
ST

31

AGND
29

GND
9

GND
17

AVCC
30

VCC
3

VCC
26

VCCIO
13

D
0

25

D
1

24

D
2

23

D
3

22

D
4

21

D
5

20

D
6

19

D
7

18

R
D

16

W
R

15

TX
E

14

R
X

F
12

SI
/W

U
11

PW
R

EN
10

IC
4

FT
24

5B
M

R
15

27
E

R
16

27
E

R
17

1K
5

V
C

C

R
12

0E

R
13

0E

R
7

39
0E

R
8

39
0E

R
9

39
0E

R
18

22
K

C
S

1

SK
2

D
I

3

D
O

4
G

N
D

5

V
C

C
8

O
R

G
6

D
C

7

IC
6

93
C

46

R
19

2K
2

R
6

10
K

V
C

C

G
N

D

EE
CS

EE
SK

EE
D

A
T

A

G
N

D
G

N
D

G
N

D
G

N
D

Q
2

6.
0M

H
Z

Q
1

11
.0

59
2M

H
Z

C
26

33
PF

/1
6V

C
27

33
PF

/1
6V

G
N

D

G
N

D

X
F1

X
F2

G
N

D

C
23

33
N

F/
16

V

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

V
C

C
V

C
C

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

R
D

-
W

R

V
C

C
V

C
C

V
C

C

C
24

33
PF

/1
6V

C
25

33
PF

/1
6V

G
N

D

G
N

D

X
A

1

X
A

2

M
IS

O
M

O
SI

SC
K

TX
-R

E
Q

SS
-

R
X

-B
U

SY

G
N

D

V
C

C

M
O

SI

R
ES

ET
-

R
ES

ET
-

SC
K

M
IS

O

R
X

E-

R
X

E-

TX
E-

TX
E-

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

G
N

D

G
N

D
G

N
D

G
N

D

G
N

D

V
C

C
V

C
C

C
22

10
0N

F/
16

V

D
5

LL
41

48

V
C

C
V

C
C

G
N

D
G

N
D

R
ES

ET
-

V
C

C R
10

0E

V
U

SB

R
11

0E

R
X

D
-U

SB
TX

D
-U

SB

LD
4

3M
M

LD
5

3M
M

LD
6

3M
M

R
14

47
0E

TX
-R

E
Q

R
X

-B
U

SY

SS
-

M
O

SI

M
IS

O

SC
K

TX
-R

E
Q

R
X

-B
U

SY

SS
-

M
O

SI

M
IS

O

SC
K

21 3 4

X
16

4X
1

V
C

C

G
N

D

R
X

D
-U

SB
TX

D
-U

SB

R
26

0E

R
27

0E

SI
W

U

SI
W

U

PW
R

EN

PW
R

EN

R
ES

_F
T

V
C

C

R
ES

_F
T

14
23

SW
5

SW
-D

-B
-6

81
0

C
33

10
0N

F/
50

V

V
C

C

G
N

D

A
pp

lic
at

io
n

Bo
ar

d

A
T

M
E

G
A

 3
2

2A

Pi
xn

er
3/

3

C
16

10
0N

F/
50

V

C
17

10
0N

F/
50

V

C
18

10
0N

F/
50

V
C

20

10
0N

F/
50

V

C
19

10
0N

F/
50

V

C
21

10
0N

F/
50

V

PA
D

4

PA
D

-C
70

/4
0

PA
D

5

PA
D

-C
70

/4
0

PA
D

6

PA
D

-C
70

/4
0

PA
D

7

PA
D

-C
70

/4
0

PA
D

8

PA
D

-C
70

/4
0

PA
D

9

PA
D

-C
70

/4
0

G
N

D

V
C

C

M
O

SI

R
ES

ET
-

SC
K

M
IS

O

R
42

0E
R

ES
_F

T

PA
D

10

PA
D

-S
-7

0
PA

D
11

PA
D

-S
-7

0
PA

D
12

PA
D

-S
-7

0
PA

D
13

PA
D

-S
-7

0
PA

D
14

PA
D

-S
-7

0
PA

D
15

PA
D

-S
-7

0

PA
D

16

PA
D

-S
-7

0
PA

D
17

PA
D

-S
-7

0
PA

D
18

PA
D

-S
-7

0
PA

D
19

PA
D

-S
-7

0
PA

D
20

PA
D

-S
-7

0
PA

D
21

PA
D

-S
-7

0

G
N

D

V
C

C

M
O

SI

R
ES

ET
-

SC
K

M
IS

O

48 C-Control Pro Mega Series

© 2011 Conrad Electronic

3.6.3 Component Parts Plan

49Hardware

© 2011 Conrad Electronic

3.7 Mega128 Application Board

USB

The application board provides a USB interface for the program’s loading and debugging. Because
of the high data rate of this interface data transmission times are considerably shorter compared
to the serial interface. Communication takes place through a USB Controller by FTDI and an AVR
Mega8 Controller. The Mega8 provides its own Reset push button (SW5). During USB operation
the status of the interface is indicated by two light emitting diodes (LD4 red, LD5 green). When
only the green LED lights up the USB interface is ready for operation. During data transmission
both LEDs will light up. This also applies to the Debug mode. Flashing of the red LED indicates an
error condition. Is a program started in the Interpreter, the red LED is turned on during the runtime.
For USB communication the SPI interface of Mega128 is used (PortB.0 through PortB.4,
PortE.5), which must be connected by their respective jumpers.

Note: Detailed information on the Mega8 can be found in the IC manufacturer’s PDF files on the C-
Control Pro Software CD-ROM.

On-Off Switch

The switch SW4 is located on the front of the application board and serves the power-up (On) or
power-down (Off) of the voltage supply.

Light Emitting Diodes (LED)

There are 5 light emitting diodes (LEDs). The LD3 (green) is located on the front below the DC
terminals and lights up when supply voltage is applied. LD4 and LD5 indicate the status of the USB
interface (see Section USB). The green LEDs LD1 and LD2 are located next to the four push
buttons and are freely available to the user. They are connected to VCC through a dropping resistor.
By means of jumpers LD1 can be connected to PortG.3 and LD2 to PortG.4. The LEDs will light up
when the corresponding pin port is low (GND).

Push Buttons

There are four push buttons provided for. SW3 (RESET1) will initiate a reset with Mega128 while
SW5 (RESET2) will do the same with Mega8. The push button SW1 and SW2 are freely available to
the user. Through jumpers SW1 can be connected to PortE.4 and accordingly SW2 to PortE.6.
There is the possibility to connect switches SW1/2 to either GND or VCC. The possibilities to
choose from are determined by JP1 and JP2 resp. In order to have a defined level at the input port
while the push button is open the corresponding pull-up should be switched on (see Section
Digitalports).

 Pressing SW1 during power-up of the board will activate the Serial Bootloader Mode.

LCD

An LCD module can be plugged onto the application board. It displays 2 lines at 8 characters each.

50 C-Control Pro Mega Series

© 2011 Conrad Electronic

In general also differently organized displays can be operated through this interface. Each character
consists of a monochrome matrix of 5x7 pixels. A flashing cursor below any one of the characters
will indicate the current output position. The operating system provides a simple software interface
for output on the display. This display is connected to connector X14 (16 poles, double row). By
means of a mechanical protection a faulty connection and thus the confusing of poles is avoided.

The LCD module used is of type Hantronix HDM08216L-3. Further information can be found on the
Hantronix Webseite http://www.hantronix.com and in the data sheet list on the CD-ROM.

The display is operated in the 4-Bit data mode. Data bits are set to the EXT-Data output, and then
clocked into the 74HC164 shift register with triggering EXT-SCK. When LCD-E is set, the 4 Bits are
applied to the display.

LCD Contrast (LCD ADJ)

Direct frontal view will allow best readability of the LCD characters. If necessary the contrast must be
trivially re-adjusted. The contrast can be adjusted by means of potentiometer PT1.

Keyboard

For user inputs a 12 character keyboard (0..9,*,#) is provided (X15: 13 pole connector). The keyboard
is organized 1 out of 12, i. e. there is one line assigned to each key. The keyboard information is
read-in serially through a shift register. If no keyboard is used the 12 inputs can be used as
additional digital inputs. The keyboard uses a 13 pole terminal (single row) and is plugged to X15 in
such a way that the keys will point towards the application board.

With activating the PL (parallel load - KEY-E) input of the 74HC165 all 12 keyboard wires are
transferred in the 74HC165 shift register. After that all information bits are latched to Q7 with
triggering of CP (clock input - EXT-SCK). There they can be read with the EXT-Data Port. Since one
74HC165 holds only 8 Bit information, Q7 of the 1st 74HC165 is connected with DS of the 2nd
74HC165.

SRAM

The application board holds an SRAM chip (K6X1008C2D) made by Samsung. By using this the
available SRAM memory is extended to 64kByte. Mentioned SRAM uses Ports A, C and partly
G for triggering. If the SRAM is not used then it can be de-activated by JP7 and then these
ports become available to the user.

 To deactivate the SRAM the jumper JP7 has to be moved to the left side (orientation: serial
interface shows to the left), such that the left pins of JP7 are connected.

 Even though the used RAM chip has a capacity of 128kb only 64kb can be used for reason
of the memory model.

http://www.hantronix.com

51Hardware

© 2011 Conrad Electronic

I2C Interface

Through this interface serial data can be transmitted at high speed. To do this only two signal lines
are necessary. Data transmission takes place according to the I2C protocol. To effectively use this
interface special functions are provided (see Software Description I2C).

 I2C SCL I2C Bus Clock Line PortD.0

 I2C SDA I2C Bus Data Line PortD.1

Power Supply (POWER, 5 Volt, GND)

Power is provided to the application board by means of a 9V/ 250mA Mains Plug-in Power Supply.
Depending on additionally used components it may later become necessary to use a power supply
with higher power rating. A fixed voltage control generates an internally stabilized 5V supply voltage.
This voltage is provided to all circuit components on the application board. Due to the power reserve
of the Plug-In Power Supply this voltage can also be used to power external ICs.

 Please observe the Maximum Drawable Current. Exceeding this current may lead to immediate
destruction! Because of the relativelly high current consumption of the application board in the
vicinity of 125mA it is not recommended for use in devices consistently battery operated. Please see
the note on short time breakdowns of the power supply (see Reset Characteristics).

 If you turn the application board to a position where the interface connectors (USB and serial)
show to the upper side, the leftmost column on the breadboard is GND and the rightmost column is
VCC.

Serial Interfaces

The Micro Controller Atmega128 contains in its hardware two asynchronous serial interfaces
according to RS232 standards. The format (Data Bits, Parity Bit, Stop Bit) can be determined during
initialization of the interface. The application board contains a high value level conversion IC for both
interfaces to transform the digital bit streams to Non Return Zero Signals in accordance with the
RS232 standards (positive voltage for low bits, negative voltage for high bits). The level conversion IC
makes use of an improved protection against voltage transients. Voltage transients can in electro-
magnetically loaded surroundings (e. g. in industrial applications) be induced in the interface cables
and thus destroy connected electrical circuits. By means of jumpers the data lines RxD0 (PortE.0),
TxD0 (PortE.1) and RxD1 (PortD.2), TxD1 (PortD.3) can through the Controller be connected to the
level converter. During quiescent condition (no active data transmission) a negative voltage of several
volts can be measured on Pin TxD against GND. RxD is of high impedance. The 9 pole SUB-D
socket of the application board carries RxD0 on Pin 3 and TxD0 on Pin 2. Pin 5 is the GND
connection. No handshake signals are being used for serial data transmission. The second serial
interface is lead to a 3 pole pin strip. Here RxD1 occupies Pin 2, TxD1 occupies Pin 1 while Pin 3 is
GND.

The cable with connection to the NRZ Pins TxD, RxD and RTS may have a length of up to 10
meters. It is recommended to use shielded standard cables. When using longer lines or non-
shielded cables interferences may detract correct data transmission. Only use cables of which the
pin assignments are known.

52 C-Control Pro Mega Series

© 2011 Conrad Electronic

 Never connect the serial transmission outputs of two devices directly together! Transmission

outputs can usually be identified by their negative output voltage in quiescent condition.

Testing Interfaces

The 4 pole pin strip X16 is to be used for testing purposes only and will not necessarily be armed
with components of any kind on every application board. For the user this pin strip is of no
importance.

One further testing interface is the 6 pole pin strip (two rows at 3 pins each) at the lower right next to
 JP4. This pin strip too is only meant for internal use and may likely no longer be fitted with
components in future board series.

Technical Data Application Board

Note: Detailed information's can be found in the IC manufacturer’s PDF files on the C-Control Pro
Software CD-ROM.
All voltage specifications are referring to direct current (DC).

Mechanics

Overall measurements, appr. 160 mm x 100 mm

Pin pitch wiring field 2.54 mm

Environmental Conditions

Range of admissible ambient temperature 0°C … 70°C

Range of admissible relative ambient humidity 20% … 60%

Power Supply

Range of admissibly operating voltage 8V … 24V

Power consumption without external loads appr. 125mA

Max. admissibly permanent current from a
stabilized 5V power supply

200mA

3.7.1 Jumper Application Board

Jumper

By use of jumpers certain options can be selected. This applies to several ports which are provided
with special functions (see Pin Assignment Table for M128). E. g. the serial interface is realized
through Pins PortE.0 and PortE.1. If the serial interface is not being used then the corresponding
jumpers can be removed and these pins will then be available for other functions. Besides the port

53Hardware

© 2011 Conrad Electronic

jumpers there are additional jumpers which are described in the following.

Jumperpositionen im Auslieferzustand

Ports A through G

The ports available with the Mega128 Module are inscribed in this graph. Here the yellow side is
connected to the module while the light blue side connects to the components of the application
board. If any jumper is pulled then the connection to the application board is suspended. This may
lead to obstructions of USB, RS232, etc. on the board. The gray marking indicates the first Pin (Pin
0) of the Port.

JP1 and JP2

These jumpers are assigned to push buttons SW1 and SW2. There is the possibility to operate the
push button against both GND or VCC. In the basic setting the push buttons are switching to GND.

JP4

JP4 serves to toggle the operating voltage (Mains Plug-In Power Supply or USB). The application
board should be operated using Plug-In Power Supply and voltage control (Shipping Condition). The
maximum current to be drawn from the USB interface is lower than from the Plug-In Power Supply.
Exceeding this current can lead to damage on the USB interface of the computer.

54 C-Control Pro Mega Series

© 2011 Conrad Electronic

JP6

When using the displays the LED back lighting can be switched off by use of JP6.

JP7

If the SRAM on the application board is not needed it can be de-activated by use of JP7. These ports
will then be available to the user.

 To deactivate the SRAM the jumper has to be moved to the left side (orientation: serial interface
shows to the left), such that the left pins of JP7 are connected.

J4

To jumper J4 the second serial interface of the Mega128 is connected through a level converter.

 Pin 1 (left, gray) TxD

 Pin 2 (center) RxD

 Pin 3 (right) GND

PAD3

PAD3 (to the right of the module) is required as ADC_VREF_EXT for functions ADC_Set and
ADC_SetInt.

55Hardware

© 2011 Conrad Electronic

3.7.2 Connection Diagram

C
1
0

1
0
0
n
F

C
1
1

1
0
0
n
F

-
+

C
1
2

1
0
0
u
F

-
+

C
1
3

1
0
u
F

C
1
4

1
0
0
n
F

C
1
5

1
0
0
n
F

C
3
2

1
0
0
n
F

C
6

1
0
0
n
F

C
7

1
0
n
F

C
9

1
0
0
n
F

D
1

1
N
4
0
0
7

D
2

1
N
4
0
0
7

D
3

1
N
4
0
0
7

D
4

1
N
4
0
0
7

10mm

Project: MEGA128app_V2

Sheet 1 of 4

PCB-Design: MEGA Appl.-Board

schäffel electronic gmbh
IC3

7805
78xx

I O

G

JP4

L1

BLM21A

L
D
1

L
D
2

L
D
3

MOD1

MOD2

MOD3

MOD4

PAD1
TP

PAD2
TP

PAD3
TP

PAD_GND
TP

R
1

3
9
0
R

R
2

3
9
0
R

R
3

3
9
0
R

R4

47k

R5

47kS
W
3

SW4

X11

X2

X3

X3A

X3B

X4

X5 X5A

X6 X6A

X7

X8

X8A

XP

AREF

AREF

AREF

AVCC AVCC

CANH

CANL

EXT-A1

EXT-A1

EXT-A2

EXT-A2

EXT-DATA

EXT-RXD0

EXT-RXD1

EXT-SCK

EXT-SCL

EXT-SDA

EXT-T1

EXT-T2

EXT-TXD0

EXT-TXD1

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

KEY-E

LCD-E

LED1

LED1

LED2

LED2

MISO

MISO

MOSI

MOSI

PA0

PA0

PA1

PA1

PA2

PA2

PA3

PA3

PA4

PA4

PA5

PA5

PA6

PA6

PA7

PA7

PB0
PB0PB1
PB1PB2
PB2PB3
PB3

PB4
PB4

PB5
PB5

PB6
PB6

PB7
PB7

PC0

PC0

PC1

PC1

PC2

PC2

PC3

PC3

PC4

PC4

PC5

PC5

PC6

PC6

PC7

PC7

PD0

PD0

PD1

PD1

PD2

PD2

PD3

PD3

PD4

PD4

PD5

PD5

PD6

PD6

PD7

PD7

PE0

PE0

PE1

PE1

PE2

PE2

PE3

PE3

PE4

PE4

PE5

PE5

PE6

PE6

PE7

PE7

PF0

PF0

PF1

PF1

PF2

PF2

PF3

PF3

PF4

PF4

PF5

PF5

PF6

PF6

PF7

PF7

PG0

PG0

PG1

PG1

PG2

PG2

PG3

PG3

PG4

PG4

RESET

RESET

RESET-

RX-BUSY

SCK

SCK

SS-

TX-REQ

VCC

VCC

VCC

VCC

VCC

VCC

VIN

VREF

VREG

VUSB

2

1 3

1

2

3

1

10

11

12

13

14

15

16

2

3

4

5

6

7

8

9

1

15

14

13

12

11

10

9

2

3

6

5

4

8

7

16

1

10

11

12

13

14

15

16

2

3

4

5

6

7

8

9

1

9

10

12

13

14

15

16

2

3

4

5

6

7

8

11

1
2

1 2

1
2

3

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

1

2

3

4

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

1

2

1 2

3 4

5 6

b
0
8
0
5
j

b
0
8
0
5
j

e
0
3
c
1
6
5

e
0
1
d
5
x
1
1
s

b
0
8
0
5
j

b
0
8
0
5
j

b
0
8
0
5
j

b
0
8
0
5
j

b
0
8
0
5
j

b
0
8
0
5
j

$
p
l
n
a
m
e

$
p
l
n
a
m
e

$
p
l
n
a
m
e

$
p
l
n
a
m
e

$plname

b0805_spule

$
s
p
l
n
a
m
e

$
s
p
l
n
a
m
e

$
s
p
l
n
a
m
e

b
0
8
0
5
j

b
0
8
0
5
j

b
0
8
0
5
j

b0805j

b0805j$
p
l
n
a
m
e

taster1

C
2
8

1
0
0
n
F

C
2
9

1
0
0
n
F

C
3
0

1
0
0
n
F

C
3
1

1
0
0
n
F

10mm

Project: MEGA128app_V2

Sheet 2 of 4

PCB-Design: MEGA Appl.-Board

schäffel electronic gmbh

Vcc

Vss

A0

A1

A2 SDA24Cxx
IC2

(WP)

SCL

$val
C1/
R

SRG8

& 1D

IC7

74HC164

3D
2D
2D

SRG8
G1[SHIFT]
C2[LOAD]

1
1

1C3/

IC8

74HC165

3D
2D
2D

SRG8
G1[SHIFT]
C2[LOAD]

1
11C3/

IC9

74HC165

J
P
1

J
P
2

JP5

JP6

PT1
10k

R20

1k

R21

1k

R22

1k

R
2
3

1
k

R
2
4

1
0
R

R
2
5

4
k
7

R
2
8

4
k
7

R
2
9

4
k
7

R30

4k7

R31

4k7

R32

4k7

R33

4k7

R34

4k7

R35

4k7

R36

4k7

R37

4k7

R38

4k7

R39

4k7

R40

4k7

R41

4k7

R
4
9

4
k
7

R
5
0

4
k
7

R
5
1

4
k
7

R
5
2

4
k
7

SW1

SW2

T1
BC846C

X14

X15

EXT-DATA

EXT-SCK

E
X
T
-
S
C
L

E
X
T
-
S
D
A

EXT-T1

EXT-T2

GND

GND

GND

GND

GND GND

GND

GND
GND

GND

GND

GND

KEY-E

LCD-D4

LCD-D4 LCD-D5
LCD-D5

LCD-D6

LCD-D6 LCD-D7

LCD-D7

LCD-E

LCD-RS

LCD-RS

LCD-RW

LCD-RW

RXD0

TXD0

VCC

VCC

VCC

VCC

VCC

VCCVCC

VCC

VCC

KEY3

KEY6

KEY9

KEY12

KEY2

KEY5

KEY8

KEY10

KEY1

KEY4

KEY7

KEY11

KEY12

KEY5

KEY1

KEY7

KEY11

KEY4

KEY10

KEY8

KEY2

KEY9

KEY6

KEY3

KEY2

KEY9

KEY6

KEY3

KEY12

KEY5

KEY1

KEY7

KEY11

KEY4

KEY10

KEY8

1

2

3

4

5

6

7

8

9

1

2

8

3

4

5

6

10

11

12

13

7

11

12

13

2

15

14

3

4

5

69

10

1

7

11

12

13

2

15

14

3

4

5

69

10

1

1 2 3

1 2 3

1

2

3

4

5

6

7

8

9

1

2

2 1

1 2

2

3
1

1

10

11 12

13 14

15 16

2

3 4

5 6

7 8

9

1

10

11

12

13

2

3

4

5

6

7

8

9

b
0
8
0
5
j

b
0
8
0
5
j

b
0
8
0
5
j

b
0
8
0
5
j

$plname

$plname

$plname

$plname

pot0s

b0805j

b0805j

b0805j

b
0
8
0
5
j

b
0
8
0
5
j

b
0
8
0
5
j

b
0
8
0
5
j

b
0
8
0
5
j

b0805j

b0805j

b0805j

b0805j

b0805j

b0805j

b0805j

b0805j

b0805j

b0805j

b0805j

b0805j

b
0
8
0
5
j

b
0
8
0
5
j

b
0
8
0
5
j

b
0
8
0
5
j

$plname

$plname

sot23

56 C-Control Pro Mega Series

© 2011 Conrad Electronic

C16

100nF

C
1
7

1
0
0
n
F

C
1
8

1
0
0
n
F

C19

100nF

C20

100nF

C21

100nFC
2
2

1
0
0
n
F

C23

33nF

C24

33pF

C25

33pF

C26

33pF

C27

33pF

C
3
3

1
0
0
n
F

10mm

Project: mega128app_v2

Sheet 3 of 4

PCB-Design: MEGA Appl.-Board

schäffel electronic gmbh

D
5

L
L
4
1
4
8

IC4

G
N
D

F
T
2
4
5
B
M

3V3OUT

RSTOUT

USBDP

USBDM

V
C
C

V
C
C

A
V
C
C

V
C
C
I
O

D6
G
N
D

A
G
N
D

RD-

WR

TXE

RXF

SI/WU

PWREN

D5

D4

D3

D2

D1

D0

D7

TEST

EECS

EESK

EEDATA

RESET

XTOUT

XTIN

IC5
XTAL1

XTAL2

A
T
M
E
G
A
8
L
-
8
A
C

RESET

PB0

PB1

PB2

PB3

PB4

PB5

PD0

PD1

PD2

PD3

PD4

PD5

PD6

PC1

G
N
D

G
N
D

AVCC

AREF

AGND

V
C
C

V
C
C

PD7

PC2

PC3

PC5

PC4

PC0

GND

93LC46B
IC6

VDD

DO

CS

SK

DI

L
D
4

L
D
5

L
D
6

Q
1

1
1
.
0
5
9
2
M
H
z

Q
2

6
M
H
z

R10

0R

R11

0R

R12

0R

R13

0R

R
1
4

4
7
0
R

R15

27R

R16

27R R17

1k5

R
1
8

2
2
k

R19

10k

R26

0R

R27

0R

R42

0R

R
6

2
k
2

R
7

3
9
0
R

R
8

3
9
0
R

R
9

3
9
0
R

S
W
5

X12

X
1
6

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND
GND

G
N
D

GNDMISO

MOSI

PWREN

PWREN

RES_FT

RES_FT

RES_FT

RESET-

RESET-

RX-BUSY

SCK

SIWU

SIWU

SS-

TX-REQ

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC VCC

VCC

VUSB

D7

D6 D5

D4

D3

D2

D1

D0

D7

D6

D5

D4

D3

D2

D1

D0

1

10

11

12

13

14

15

16

17

18

19

2

20

21

22

23

24

25

26

27

28

29

330

31

32

4

5

6

7

8

9

1

10

11

12

13

14

15

16

17

18

2

20

21

23

24

25

26

27

28

29

3

30

31

32

4

5

6

7

8

9

1

2

3

4

5

68

1
2

1
2

1
2

1

2

3

4

5

1 2 3 4

b0805j

b
0
8
0
5
j

b
0
8
0
5
j

b0805j

b0805j

b0805j

b
0
8
0
5
j

b0805j

b0805j

b0805j

b0805j

b0805j

b
0
8
0
5
j

s
o
d
8
0

$
s
p
l
n
a
m
e

$
s
p
l
n
a
m
e

$
s
p
l
n
a
m
e

$
p
l
n
a
m
e

$
p
l
n
a
m
e

b0805j

b0805j

b0805j

b0805j

b
0
8
0
5
j

b0805j

b0805j

b0805j

b
0
8
0
5
j

b0805j

b0805j

b0805j

b0805j

b
0
8
0
5
j

b
0
8
0
5
j

b
0
8
0
5
j

b
0
8
0
5
j

$
p
l
n
a
m
e

C
1

1
0
0
n
F

C
2

1
0
0
n
F

C3

100nF

C
4

1
0
0
n
F

C
5

1
0
0
n
F

Vcc

IC1
MAX202

C1+ V+

V-
C2+

C1-

C2-

GND

T1IN

T2IN

R1OUT

R2OUT

T1OUT

T2OUT

R1IN

R2IN

$val

EN
C1

1D

IC10

74HC573

A0

IC11

I/O1

I/O8

K6X1008C2D

128kx8
CMOS SRAM

A16

CS2

OE

WE

CS1
VCC

GND

J1

J2

J
3

J4

JP7

R
4
3

$
v
a
l

R44

$val

R
4
5

$
v
a
l

R46

0R

R47

0R

R48

0R

10mm

Project: mega128app_v2

Sheet 4 of 4

PCB-Design: MEGA Appl.-Board

schäffel electronic gmbh

CANH

CANL

EXT-RXD0

EXT-RXD1

EXT-TXD0

EXT-TXD1

GND

GNDGND

GND

GND

GND

GND

GND

GND

GND

GND

GND

PA0 PA0

PA1 PA1

PA2 PA2

PA3 PA3

PA4 PA4

PA5 PA5

PA6 PA6

PA7 PA7

PC0

PC1

PC2

PC3

PC4

PC5

PC6

PC7

PD4

PG0

PG1

PG2

RXD0

RXD1

RXD1

TXD0

TXD1

TXD1

VCC
VCC

VCC

VSS

1

10

11

12 13

14

1
5

1
6

2

3

4

5

6

7

89

1

2 19

3 18

4 17

5 16

6 15

7 14

8 13

9 12

11

10

11

12 13

14

15

16

17

18

19

2

20

21

22

23

24

25

26

27

28

29

3

30

31

32

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

10

2

3 4

5 6

7 8

9

1 2

1

2

3

1

2

3

b
0
8
0
5
j

b
0
8
0
5
j

b0805j

b
0
8
0
5
j

b
0
8
0
5
j

$plname

xsubd9bs

b
0
8
0
5
j

b0805j

b
0
8
0
5
j

b0805j

b0805j

b0805j

57Hardware

© 2011 Conrad Electronic

3.7.3 Component Parts Plan

58 C-Control Pro Mega Series

© 2011 Conrad Electronic

3.8 Mega32 Projectboard

The C-Control Projectboard PRO32 provides a economic alternative to the application board
MEGA32 (Conrad-Order no. 198 245). Compared to the C-Control Pro application board, it's range of
functions is significantly limited, and is used mainly for own hardware developments related to the
MEGA32 UNIT. The Projectboard includes the most important components needed to operate the
MEGA32 UNIT. Furthermore, the Projectboard features a power supply (USB / AC adapter), a
interface converter (RS232) and a large prototype area available for own development. By default, the
Projectboard is designed for programming via RS232. Optionally, the RS232-USB converter (Conrad-
Order no. 197 257) can be used for programming the MEGA32 UNIT via USB. In this case the
programming is done via the serial connection of the MEGA32 UNIT (UART), so the program transfer
is not as fast as the USB transfer on the application board MEGA32.

The MEGA32 UNIT is so plugged that the signature of the UNIT is readable, if the programming
and power connectors show out to you.

In the baseline condition with no-USB-RS232 converters the jumpers J4/J3 are put like shown in
the figure.

 When using the RS232-USB converter (not included), the jumper must be reconnected to USB.

The jumper J2 is used to select the supply voltage. With the jumper set to "network", the clamps
J11 are used for the power supply (stabilized DC power supply or power adapter min. 100mA,
depending on application). If the jumper J2 is replugged to USB, the board can be operated via the
USB power supply of the computer.

 Attention! A maximum current of 100mA through USB should not be exceeded!

59Hardware

© 2011 Conrad Electronic

The switch S3 and the power supply pin headers JP7/JP5 and the pins for Vcc / GND on the
prototype area are no longer energized when using USB operation. This supply is used only for
test applications, when there is no external power supply available.

The appropriate COM port (serial port) must be selected in the C-Control Pro IDE software. Also
the programming via USB is made through the serial interface of the C-Control PRO32 UNIT. Prior
to that check, when necessary, the Windows device manager, which COM ports are available, or
which was installed by the RS232-USB converter.

If the I2C bus is used, the jumper JP2 and JP1 have to be inserted, if you provide no external pull-
up resistors by your own.

The bus unit is used to connect I2C-bus expansion modules of the CC1-family and can be used for
custom applications. The interface layout can be found in the figure.

The ports of the MEGA32 UNIT are passed out on headers J1, J5, J6 and J7.

Before you can transfer a program in the unit, the key (BOOT / STOP) must be pressed, to switch
the C-Control PRO32 into programming mode.

When the voltage is supplied, the user program stored in the memory of the C-Control MEGA32 is
started automatically. This program can be stopped with the (BOOT/STOP) button. Then the C-
Control PRO32 is in BOOT mode, which is required for program transmission.

The program start can be triggered via the IDE or on the button (RESET / START).

When using Msg_Write... to output variables, it is advisable to use the software start from the IDE.

Technical data
Operating voltage: 8 - 16V DC
Current consumption without load and without external USB-RS232 Converter: about 40mA
Max continuous current from the stabilized 5V voltage: 100mA (without cooling)
Prototype area: 2.54 mm
Range of the permissible ambient temperature: 0 ° C to 70 ° C
Admissible relative humidity environment .. 20-60% non-condensing
Dimensions: 60 * 100 * 21mm (including MEGA32 UNIT)

60 C-Control Pro Mega Series

© 2011 Conrad Electronic

3.9 Mega128 Projectboard

The "C-Control PRO 128 Projectboard" provides a economic alternative to the "Application-Board
MEGA128" (Conrad-Order no. 198258). Compared to the C-Control Pro application board, it's range
of functions is significantly limited, and is used mainly for own hardware developments related to the
"MEGA128 UNIT" and the "MEGA128CAN UNIT". The Projectboard also offers a connector "J3",
which provides the CAN bus interface of the "MEGA128CAN". On the Projectboard the "MEGA128"
or the "MEGA128CAN" can optionally be used. The Projectboard PRO 128 includes the most
important components needed to operate the "MEGA128 UNIT". Furthermore, the Projectboard
features a power supply (USB/AC adapter), a interface converter (RS232) and a large prototype area
available for your own development. By default, the Project Board is designed for programming via
RS232. Optionally, the RS232-USB converter (Conrad-Order no. 197257) can be used for
programming the "MEGA128 UNIT" via USB. In this case the programming is done via the serial
connection of the "MEGA128 UNIT" (UART), so the program transfer is not as fast as the USB
transfer on the "Application-Board MEGA128".

The "MEGA128 UNIT" is so plugged that the signature of the UNIT is readable, if the (RESET/RUN
& BOOT/STOP) button shows to you.

In the baseline condition with no-USB-RS232 converters the jumpers JP4/JP5 are put like shown
in the figure.

 When using the RS232-USB converter (not included), the jumper must be reconnected to USB.

The jumper J2 is used to select the supply voltage. With the jumper set to "network", the clamps

61Hardware

© 2011 Conrad Electronic

J11 are used for the power supply (stabilized DC power supply or power adapter min. 100mA,
depending on application). If the jumper J2 is replugged to USB, the board can be operated via the
USB power supply of the computer.

 Attention! A maximum current of 100mA through USB should not be exceeded!

The switch S3 and the power supply pin headers J17/J18 and the pins for Vcc / GND on the
prototype area are no longer energized when using USB operation. This supply is used only for
test applications, when there is no external power supply available.

The appropriate COM port (serial port) must be selected in the C-Control Pro IDE software. Also
the programming via USB is made through the serial interface of the C-Control "MEGA128 UNIT".
Prior to that check, when necessary, the Windows device manager, which COM ports are
available, or which was installed by the RS232-USB converter.

If the I2C bus is used, the jumper JP2 and JP1 have to be inserted, if you provide no external pull-
up resistors by your own.

The bus unit is used to connect I2C-bus expansion modules of the CC1-family and can be used for
custom applications. The interface layout can be found in the figure.

The ports of the "MEGA128 UNIT" are passed out on headers J1, J2, J5, J6, J7, J14 and J15.

 For more information on the exact characteristics of the ports, see the documentation/help file
in the C-Control Pro software.

Before you can transfer a program in the unit, the button (BOOT/STOP) must be pressed, to
switch the "MEGA128 UNIT" into programming mode.

When the voltage is supplied, the user program stored in the memory of the "MEGA128 UNIT" is
started automatically. This program can be stopped with the (BOOT/STOP) button. Then the
"MEGA128 UNIT" is in BOOT mode, which is required for program transmission.

The program start can be triggered via the IDE or on the button (RESET/START).

When using Msg_Write... to output variables, it is advisable to use the software start from the IDE.

62 C-Control Pro Mega Series

© 2011 Conrad Electronic

Technical data
Operating voltage: 8 - 16V DC
Current consumption without load and without external RS232-USB converter: 50 mA
Max continuous current from the stabilized 5V voltage: 100 mA (without cooling)
Prototype area: 2.54 mm
Range of the permissible ambient temperature: 0 ° C to +70 ° C
Admissible relative humidity environment .. 20 - 60% non-condensing
Dimensions: 160 x 100 x 23 mm (including "MEGA128 UNIT" or "MEGA128CAN UNIT)

Part

4

64 C-Control Pro Mega Series

© 2011 Conrad Electronic

IDE4

The C-Control Pro User Interface (IDE) consists of the following main elements:

Sidebar for Project Files Here several files can be filed to form a project
Editor Window In order to edit files as many editor windows as necessary can be

opened.
Compiler Messages Here error messages and general compiler informations are displayed
C-Control Outputs Distribution of the CompactC program’s debug messages
Variables Window Here monitored variables are displayed

65IDE

© 2011 Conrad Electronic

4.1 Projects

Every program for the C-Control Pro Module is configured through a project. The project states which
source files and libraries are being utilized. Also the settings of the Compiler are noted. A project
consists of the project file with the extension ".cprj" and the appropriate source files.

4.1.1 Create Projects

In the menu Project the dialog box Create Project can be opened by use of item New. Here a project
name is issued for the project. Then the project is created in the sidebar.

 It is not necessary to decide in advance whether a CompactC or a BASIC project will be created.
In a project CompactC or BASIC files can be arranged combined as project files in order to create a
program. The source text files in a project will determine which programming language will be used.
Files with the extension “*.cc“ will run in a CompactC context while files with the extension “*.cbas“
are translated into BASIC.

4.1.2 Compile Projects

66 C-Control Pro Mega Series

© 2011 Conrad Electronic

In menu Project the current project can be translated by the Compiler by use of Compile (F9). The
Compiler messages are displayed in a separate window section. If errors arise during compilation
then one error will be described per line. The form is:

 File Name(Line,Column): Error Description

The error positions can be found in the source text by use of commands Next Error (F11) or Previous
Error (Shift-F11). Both commands are found in menu item Project. Alternative the cursor can in the
Editor be placed onto the error position by use of a double mouse click on the Compiler’s error
message.

After successful compilation the Byte Code will be filed in the project list as file with the extension
"*.bc".

By a right mouse click in the area of the compiler messages the following actions can be initiated:

delete – will delete the list of compiler messages
copy to clipboard – will copy all text messages onto the clipboard

4.1.3 Project Management

A right mouse click on the newly created project in the sidebar will open a pop-up menu with the
following options:

Newly Add – A new file will be set up and simultaneously an editor window will be opened.
Add – An existing file will be attached to the project.
Rename – The name of the project will be changed (This is not necessarily the name of the project
file).
Compile – The compiler for the project is started.
Options – The project options can be changed.

Adding of Project Files

When clicking Add project file the file Open Dialog will appear. Here the files to be added to the
project can be selected. Any number of files can be selected.

Alternative by use of Drag&Drop files from the Windows Explorer can be transferred into the project
management.

67IDE

© 2011 Conrad Electronic

Project Files

When files have been added to the project these can be opened by a double mouse click onto the
file name. By use of a right click further options will appear:

Up – The project file will move up the list (also with Ctrl - Arrow up).
Down – The project file will move down (also with Ctrl - Arrow down).
Rename – The name of the project file will be changed.
Delete – The file will be deleted from the project.
Options – The project options can be changed.

4.1.4 Thread Options

Since version 2.12 od the IDE the thread configuration is no longer made in the project options.
Please see the new syntax in Threads.

68 C-Control Pro Mega Series

© 2011 Conrad Electronic

4.1.5 Project Options

 .

For each project the compiler settings can be changed separately.

The items Author, Version, Commentary can be freely inscribed. They serve as memory support in
order to better remember the project details at a later date.

In "Select CPU" the target platform of the project is determined. A mouse click on "Scan Hardware"
will scan the connected C-Control Pro Module and select the correct CPU.

In "Options" Multi Threading is configured and it is further determined if a Debug Code should be
generated.

 If a Debug Code is compiled the Byte Code becomes insignificantly longer. For each line in the
source text which contains executable commands the Byte Code will be one Byte longer.

 In case Multi Threading should be used the selection box in the project options must be
selected. Further the parameters for each separate Thread must be set under "Configure Threads".

69IDE

© 2011 Conrad Electronic

In the options can also be selected if a Map File should be generated.

4.1.6 Library Management

In the Library Management the source text libraries can be chosen that will be compiled in addition
to the project files.

Only those files will be used for compilation whose CheckBox has been selected.

The list can be altered by use of the path text input field "Library Name" and the buttons in the
dialog:

Add – The path will be added to the list.
Replace – The selected entry in the list is replaced by the path name.
Delete – The selected list entry is deleted.
Update Library – Files present in the Compiler Presetting but not in this list will be added.

70 C-Control Pro Mega Series

© 2011 Conrad Electronic

4.2 Editor

Several windows can be opened in the C-Control Pro Interface. Each window can be altered in size
and displayed text detail. A double mouse click on the title line will maximize the window.

A mouse click in the area to the left of the text will there set a Breakpoint. Prior to this the source
text must be compiled error free with "Debug Info" and in the corresponding line really executable
program text must be placed (i. e. no commentary line o. e.).

Functions Overview

On the left side is an overview of all syntactically correct defined functions. The function names with
parameters are expressed in this view. The function where the cursor in this moment resides is
drawn with a grey bar in the background. After a double click on the function name the cursor jumps
to the beginning of that function in the editor.

71IDE

© 2011 Conrad Electronic

Code Folding

To maintain a good overview over the source code, the code can be folded. After the syntactical
analyzer, that is built into the editor, recognizes a defined function, beams are drawn on the left side
along the range of the function. A click on the minus sign in the small box folds the text, so that only
the first line of the function can be seen. Another click on the small plus sign, and the code unfolds
again.

72 C-Control Pro Mega Series

© 2011 Conrad Electronic

To fold or unfold all functions in an editor file, the options Full Collapse and Full Expand are
selectable in the right click editor pull-up menu.

Syntactical Input Help

The editor now has a syntactical input help. When the beginning of a reserved word or a function
name from the standard library is typed into the editor, the input help can be activated with Ctrl-
Space. In dependency from the already entered characters, a popup select box opens, that shows
the words that can be inserted into the source code.

Refresh Editor View

Should the syntactic analyzer fail and cannot recognize the defined function blocks (can seldom
happen in find - replace operations), the syntactic analysis can repeated if the command Refresh is
selected from the Edit pull-down menu.

4.2.1 Editor Functions

Under menu item Edit the most important editor functions can be found:

Undo (Ctrl-Z) – will execute an Undo operation. The possible number of Undo steps depends on
the settings in Undo Groups.
Restore (Ctrl-Y) – will restore the editor condition that has been changed by previous use of the
Undo command.
Cut (Ctrl-X) – will cut out selected text and will copy it to the clipboard.
Copy (Ctrl-C) – will copy selected text to the clipboard.
Insert (Ctrl-V) – will copy the contents of the clipboard to the cursor position.
Select All (Ctrl-A) – will select the entire text.
Search (Ctrl-F) – will open the Search dialog.
Continue Search (F3) – will continue the search using the set search criteria.
Replace (Ctrl-R) – will open the Replace dialog.
Go To (Alt-G) – will allow to jump to a definite line.

Search/Restore Dialog

73IDE

© 2011 Conrad Electronic

Text to find – Input field for the text to be searched for.
Replace with – Text that will replace the text found.
Case Sensitive – makes the distinction between upper and lower case writing.
Whole words only – will find only whole words rather than part character chains.
Regular expressions – activates the input of Regular Expressions in the search mask.
Prompt on replace – prior to replacing the user will be asked for approval.

Furthermore it can be pre-determined whether the entire text or a selected text area only should be
scoured and what search direction should be used.

4.2.2 Print Preview

To deliver the source code as Hard Copy or for archiving purposes, the C-Control Pro IDE has built in
printer functions. The following options can be selected from the File Pull-Down Menu:

Print: Prints the indicated pages
Print Preview: Shows a print preview
Printer Setup: Choose the printer, paper size and orientation
Page Setup: Header and Footer lines, line numbers and other parameters can be selected

74 C-Control Pro Mega Series

© 2011 Conrad Electronic

4.2.3 Keyboard Shortcuts

Taste Funktion

 Left Move cursor left one char
Right Move cursor right one char
 Up Move cursor up one line
Down Move cursor down one line

Ctrl + Left Move cursor left one word
Ctrl + Right Move cursor right one word

PgUp Move cursor up one page
PgDn Move cursor down one page

Ctrl + PgUp Move cursor to top of page
Ctrl + PgDn Move cursor to bottom of page
Ctrl + Home Move cursor to absolute beginning
Ctrl + End Move cursor to absolute end

Home Move cursor to first char of line
End Move cursor to last char of line

Shift + Left Move cursor and select left one char
Shift + Right Move cursor and select right one char
Shift + Up Move cursor and select up one line

75IDE

© 2011 Conrad Electronic

Shift + Down Move cursor and select down one line
Shift + Ctrl + Left Move cursor and select left one word

Shift + Ctrl + Right Move cursor and select right one word
Shift + PgUp Move cursor and select up one page
Shift + PgDn Move cursor and select down one page

Shift + Ctrl + PgUp Move cursor and select to top of page
Shift + Ctrl + PgDn Move cursor and select to bottom of page
Shift + Ctrl + Home Move cursor and select to absolute beginning
Shift + Ctrl + End Move cursor and select to absolute end

Shift + Home Move cursor and select to first char of line
Shift + End Move cursor and select left and up at line start

Alt + Shift + Left Move cursor and column select left one char
Alt + Shift + Right Move cursor and column select right one char
Alt + Shift + Up Move cursor and column select up one line

Alt + Shift + Down Move cursor and column select down one line
Alt + Shift + Ctrl + Left Move cursor and column select left one word

Alt + Shift + Ctrl + Right Move cursor and column select right one word
Alt + Shift + PgUp Move cursor and column select up one page
Alt + Shift + PgDn Move cursor and column select down one page

Alt + Shift + Ctrl + PgUp Move cursor and column select to top of page
Alt + Shift + Ctrl + Alt + PgDn Move cursor and column select to bottom of page

Alt + Shift + Ctrl + Home Move cursor and column select to absolute beginning
Alt + Shift + Ctrl + End Move cursor and column select to absolute end

Alt + Shift + Home Move cursor and column select to first char of line
Alt + Shift + End Move cursor and column select to last char of line

Ctrl + C; Ctrl + Ins Copy selection to clipboard
Ctrl + X Cut selection to clipboard

Ctrl + V; Shift + Ins Paste clipboard to current position
Ctrl + Z; Alt + Backspace Perform undo if available

Shift +Ctrl + Z Perform redo if available
Ctrl + A Select entire contents of editor

Ctrl + Del Clear current selection
Ctrl + Up Scroll up one line leaving cursor position unchanged

Ctrl + Down Scroll down one line leaving cursor position unchanged
Backspace Delete last char

Del Delete char at cursor
Ctrl + T Delete from cursor to next word

Ctrl + Backspace Delete from cursor to start of word
Ctrl + B Delete from cursor to beginning of line
Ctrl + E Delete from cursor to end of line
Ctrl + Y Delete current line

Enter Break line at current position, move caret to new line
Ctrl + N Break line at current position, leave caret

Tab Tab key
Tab (block selected) Indent selection

Shift + Tab Unindent selection
Ctrl + K + N Upper case to current selection or current char
Ctrl + K + O Lower case to current selection or current char

Ins Toggle insert/overwrite mode
Ctrl + O + K Normal selection mode
Ctrl + O + C Column selection mode
Ctrl + K + B Marks the beginning of a block
Ctrl + K + K Marks the end of a block

76 C-Control Pro Mega Series

© 2011 Conrad Electronic

Esc Reset selection
Ctrl + digit (0-9) Go to Bookmark digit (0-9)

Shift + Ctrl + (0-9) Set Bookmark digit (0-9)
Ctrl + Space Auto completion popup

4.2.4 Regular Expressions

The search function in the editor supports Regular Expressions. With this function character chains
can highly flexible be searched for and replaced.

 ^ A Circumflex at the beginning of the word finds the word at the beginning of a
line

 $ A Dollar Sign represents the end of a line

 . A Dot symbolizes an arbitrary character

 * A Star stands for the repeated appearance of a pattern. The number of
repetitions may also be Zero.

 + A Plus stands for the multiple or at least solitary appearance of a pattern

 [] Characters in square brackets represent the appearance of one of the characters

 []̂ A Circumflex in square brackets negates the selection

 [-] A Minus in square brackets symbolizes a character range

 { } Tailed braces will group separate expressions. Up to ten levels may be nested

 \ A Back Slash will take the special meaning from the following character

Examples

 Example will find

 v̂oid the word "void" only at the beginning of a line

 ;$ the Semicolon only at the end of a line

 v̂oid$ Only "void" may stand in this line

 vo.*d e. g. "vod","void","vqqd"

 vo.+d e. g. "void","vqqd" but not "vod"

 [qs] the letters 'q' or 's'

 [qs]port "qport" or "sport"

 [q̂s] all letters other than 'q' or 's'

 [a-g] all letters from 'a' through 'g' (including)

 {tg}+ e. g. "tg", "tgtg", "tgtgtg" asf.

 \$ '$'

4.3 C-Control Hardware

Under menu item C-Control all hardware relevant functions can be executed. These include transfer
and start of the program on the hardware as well as password functions.

77IDE

© 2011 Conrad Electronic

4.3.1 Start Program

Program Transfer

After a project has been translated free of errors the Bytecode must first be transferred onto Mega32
or Mega 128 before it can be executed. This is done by use of the command Transfer (Shift-F9) in
menu C-Control.

 Not only the Bytecode is transferred to the Mega Module. At the same time the latest interpreter
version is sent to the C-Control Module.

Start

By Start (F10) the execution of the Bytecode is brought about on Mega 32 or Mega128. On the
application board this is signaled by turning on the red LED.

Stop

During normal operation a program will be stopped by pressing the RESET1 button. For performance
reasons the program execution on the Module is during normal operation not being stopped by use
of software. This can however be performed with the IDE function Stop Program when the program
runs in Debug Mode.

 In rare cases the system can get jammed during USB operation when the RESET1 button is
pressed. To overcome this please also press RESET2 in order to issue a Reset pulse to the Mega8,
too. The Mega8 is on the Application Board responsible for the USB interface.

Auto Start

If no USB interface is connected and SW1 has not been pressed during power-up in order to reach
the Serial Bootloader Mode the Bytecode (if available) is started in the Interpreter. I.e. if the Module
is built into any hardware application the mere connection of the operating voltage is sufficient to
automatically start the user program.

 A signal on INT_0 during switch-on of the C-Control Pro Module can interfere with the auto start
behaviour. According to the pin assignments of M32 and M128 INT_0 is connected to the same pin
as switch SW1. When SW1 is pressed during power-up of the Module this will activate the Serial
Bootloader Mode and the program will not automatically be started.

78 C-Control Pro Mega Series

© 2011 Conrad Electronic

4.3.2 Outputs

For display of Debug messages there is an "Outputs" window section.

Here is shown when the Bytecode Interpreter has been started and terminated and for how long (in
milliseconds) the Interpreter was in operation. The operation time however is not very useful if the
Interpreter has been stopped during Debug Mode.

The Outputs window can also be used to display the user’s own Debug messages. For this there are
several Debug Functions.

With a right mouse click in the Debug Outputs section the following commands can be selected:

Delete – will delete the list of Debug outputs
Copy to Clipboard – will copy all text messages onto the clipboard

4.3.3 PIN Functions

Some solitary functions of the Interpreter can be protected by use of an alpha-numeric PIN. If an
Interpreter is protected by a PIN normal operations are prohibited. By means of a new transfer the
Interpreter can be overwritten, the PIN will however stay preserved. Also a normal start other than the
 Autostart behaviour is no longer allowed. Furthermore the scans of hardware and firmware version
numbers are locked.

If access to a forbidden function is tried a dialod with the following text will be displayed: "C-Control
is Password protected. Operation not allowed!".

Through inscription of the PIN with Enter PIN in the C-Control Menu all operations can again be
released.

In order to enter a new PIN or to delete a set PIN there are the commands Set PIN and Delete PIN in
the C-Control Menu. If there is an old PIN in exitence then the Module must of course first be
unlocked by entering the old PIN. The PIN can have a length of up to 6 alpha-numeric characters.

 In case the password has been lost there is an emergency function which can be used to reset
the Module to its initial state. In C-Control there is the option Reset Module which can be used to
delete PIN, Interpreter and Program.

79IDE

© 2011 Conrad Electronic

4.3.4 Version Check

Since the C-Control Pro Mega Series supports various hardware platforms it is important to closely
monitor the current version numbers of Bootloader, Interpreter and Hardware. This is possible by use
of item Hardware Version in the C-Control menu.

4.4 Debugger

In order to activate the Debugger the project must first be compiled in Debug Code free of errors and
then transferred to the Module. The file holding the Debug Code (*.dbg) must be present in the
project list.

In the Debugger menu all Debugger commands can be found. The Debugger ist started with Debug
Mode (Shift-F10). If at this point of time no Breakpoint is set then the Debugger will stop at the first
executable instruction.

80 C-Control Pro Mega Series

© 2011 Conrad Electronic

If in Debug Mode, the next Breakpoint will be reached by use of Start (F10). If no Breakpoint is set
then the program will be executed in its normal way. There is the exception however that the
program flow can be stopped by use of Stop Program. This only works providing that the program
has been started from the Debug Mode.

If the Debugger has stopped in the program (a blue bar is displayed) then the program can be
executed in single steps. The instructions Single Step (Shift-F8) and Procedure Step (F8)
respectively will execute the program code up to the next code line and will then stop again.
Opposing to Single Step the function Procedure Step will not jump into the function calls but will
overpass them. If the program has stopped all breakpoints can be changed.

 If a loop contains only one code line then one single step will execute the entire loop since only
after this branching out to a new code line will take place.

With the instruction Leave Debug Mode the Debug Mode will be terminated.

 During active Debug Mode the program text can not be altered. This is because line numbers
holding set Breakpoints must not be moved out of place. Otherwise the Debugger would not be able
to synchronize with the Bytecode onto the C-Control Module.

4.4.1 Breakpoints

The editor allows to set up to 16 Breakpoints. A Breakpoint is entered by a mouse click to the left of
the beginning of a line (see IDE or Editor Window).

 The number of Breakpoints is limited to 16 because this information is carried along in RAM

81IDE

© 2011 Conrad Electronic

during operation of the Bytecode Interpreter. Other Debuggers on the Market will set Breakpoints
directly into the program code. In our case this is not desirable since it would drastically reduce the
life time of the flash memory (appr. 10,000 writing accesses).

4.4.2 Array Window

In order to monitor the contents of Array Variables it is possible to call up a window with the array
contents. To do this the pointer is placed over the the variable and Show Array is selected by a right
mouse click.

On the left side the Array indices are shown while the contents are displayed on the right side. It
should be noted that with multi-dimensional arrays the indices on the right will gain at the faster
pace.

82 C-Control Pro Mega Series

© 2011 Conrad Electronic

The contents of an array window may at every stop of the Debugger or at every single step no longer
be actual. If with each single step in the Debugger several array windows are newly brought up-to-
date then delays may occur since the data must always be loaded from the Module. For this reason
there are three operating modes:

 Auto Actualize Actualize at Single Step and Breakpoint

 Actualize at Breakpoint Actualize only at Breakpoint

 Manually Actualize Only by clicking switch "Actualize"

4.4.3 Variable Watch Window

The contents of variables can be displayed within the Debugger. To do this the mouse pointer is
placed over the variable. Within approximately 2 seconds the content of the variable is displayed in
form of a Tooltip. The variable is first displayed in accordance to its data type and then, separated by
a comma, as Hex number with a preceeding "0x".

If several variables need to be monitored then the variables can be comprised in a list.

In order to enter a variable into the list of monitored variables there are two possibilities. For one the
cursor can be placed in the text editor at the beginning of a variable and then Insert Variable can be
selected by a right mouse click.

83IDE

© 2011 Conrad Electronic

The other possibility is by use of the context menu in the variables list which can also be activated
by a right mouse click.

When Insert Variable is selected then the variable to be monitored can as text be entered into the
list. In case of a local variable the function name with a preceeding colon (Function Name :
Variable Name) is entered. With Change Variable the text entry in the list can be altered and with
Delete Variable the variable can be entirely erased from the list. Prior to this the line holding the
variable to be deleted must be selected. The command Delete All Variables will delete all entries
from the list.

Under certain circumstances an error message is shown instead of a value in the list:

 no Debug Code No Debug Code has been generated

 wrong Syntax During text entry invalid characters have been entered for a
variable

 Function unknown The Function Name is not known

 Variable unknown The Variable Name is not known

 not in Debug Mode The Debug Mode has not been activated

 no Context Local variables can only be displayed while within this function

 not actual The content of the variable has not been updated

If a high number of variables is entered in the monitor list it may during single step operation take
quite some time until all variable contents from the module have been scanned. For this reason the
Option Auto Actualize can be switched off for individual variables. The contents of these variables will
then only be displayed after the command Actualize Variable is executed. This way the Debugger
can quickly be operated in single steps and the contents are only actualized on demand.

84 C-Control Pro Mega Series

© 2011 Conrad Electronic

 Variables of the Character type are displayed as single ASCII characters.

4.5 Tools

Terminal Window

In the Tools pulldown menu a simple terminal program can be started.

Received characters are directly shown in the terminal window. Characters can be send in two
different ways. On the one hand the user can click into the terminal window and directly type the
characters from the keyboard, on the other hand the text can be entered in to the ASCII input line
and send with the Send button. Instead of ASCII the characters can be defined as integer values in
the Integer input line. Is send C/R selected, a Carriage Return (13) is sent at the end of the line.
Enable Preserve Input to prevent that the input lines are cleared after pressing the Send button. The
Parameter button opens the Terminal settings dialog from the IDE settings.

85IDE

© 2011 Conrad Electronic

4.6 Options

In Menu Options all IDE settings and Compiler pre-settings can be found.

4.6.1 Editor Settings

Overwrite mode – Inserts text at the cursor overwriting existing text.
Auto indent mode - Positions the cursor under the first non blank character of the preceding non

blank line when you press Enter.
Backspace unindents - Aligns the insertion point to the previous indentation level (outdents it)
when you press Backspace, if the cursor is on the first non blank character of a line.
Group undo - Undo operation will not be performed in small steps but in blocks.

Group redo - If it is set Redo will involve group of changes.
Keep caret in text - Allows move caret only into text like in Memo.

86 C-Control Pro Mega Series

© 2011 Conrad Electronic

Double click line - Highlights the line when you double-click any character in the line. If disabled,
only the selected word is highlighted.
Fixed line height - Prevents line height calculation. Line height will be calculated by means of Default
Style.
Persistent blocks - Keeps marked blocks selected even when the cursor is moved using the arrow
keys, until a new block is selected.
Overwrite blocks - Replaces a marked block of text with whatever is typed next. If Persistent Blocks
is also selected, text you enter is appended following the currently selected block.
Show caret in read only mode - Shows caret in read only mode.
Copy to clipboard as RTF - Copies selected text also in RTF format.
Enable column selection - Enabled column selection mode.
Hide selection - Hides selection when editor loses focus.
Hide dynamic - Hides dynamic highlighting when editor loses focus.
Enable text dragging - Enables drag & drop operation for text movement.
Collapse empty lines - Collapse empty lines after text range when this rang have been collapsed.
Keep trailing blanks - Keeps any blanks you might have at the end of a line.
Float markers - If it is set markers are linked to text, so they will move with text during editing.
Otherwise they are linked to caret position, and stay unchanged during editing. Also markers save
scroll position.
Undo after save - Stay undo buffer unchanged after save with SaveToFile method.
Disable selection - Disables any selection.
Draw current line focus - Draws focus rectangle around current line when editor have focus.
Hide cursor on type - Hides mouse cursor when user type text and mouse cursor within client area.
Scroll to last line - When it is true you may scroll to last line of text, otherwise you can scroll to last
page. When this option is off and total text height less then client height vertical scroll bar will be
hidden.
Greedy selection - If this option is set selection will contain extra column/line during column/line
selection modes.
Keep selection mode - Selection enabled for caret movement commands (like in BRIEF).
Smart caret - Acts on the caret movement (up, down, line start, line end). Caret is moved to the
nearest position on the screen.
Word wrap - Determines whether the editor wraps text at the right side of text area.
Word break on right margin - Determines whether text wraps (word-wrap mode) on the right margin
instead of right side of client area.
Optimal fill - Begins every auto indented line with the minimum number of characters possible, using
tabs and spaces as necessary.
Fixed column move - Keeps X position of caret before editing text, this position is used when moving
up/down caret.
Variable horizontal scroll bar - Sets range of horizontal scroll bar to the maximal width of only visible
lines. Hides horizontal scroll bar if visible lines fit client width.
Unindent keep align - Restricts unindent operation when at least one of lines can not be unindented.

At Block indent the number of blanks is inscribed by which a selected block can be indented or
backed by use of the Tabulator key.
The input field Tab stops determines the width of the tabulator by numbers of characters.

4.6.2 Syntax Highlighting

In this Dialog the user can change the specific Syntax Highlighting for CompactC and BASIC. The
chosen language for the setting is CompactC or BASIC in dependency on what language is used in
the actual selected editor window.

87IDE

© 2011 Conrad Electronic

You can change the attributes of the font, and the foreground- and background color. With Multiline
border a colored border can be drawn around the highlighted strings. Also case changes can be
made with the option Capitalization Effect. The selectable Elements have the following meaning:

Symbol: all non alpha-numeric characters
Number: all numeric characters
String: all characters that are recognized as strings
Identifier: all names that are not reserved words or part of the library
Reserved Word: alle reserved words of the destination language
Comment: comments
Preprocessor: preprocessor statements
Marked Block: marked editor blocks

88 C-Control Pro Mega Series

© 2011 Conrad Electronic

Library: function names of the standard library

Default, Line separator and Sub background are not used.

4.6.3 Compiler Presetting

In the Compiler Presetting the standard values can be configured which will be stored during creation
of a new project. Presetting can be reached under Compiler in the Options menu.

A description of the options can be found under Project Options. The selection box "Configure
Library" is identical to the description in chapter Projects.

89IDE

© 2011 Conrad Electronic

4.6.4 IDE Settings

Separate aspects of the IDE can be configured.

Transfer After Compiling Callup – After a program has been compiled but not transferred to the C-
Control Module then the user will be questioned whether or not the program should be started.
Open Last Project – The last open project will be re-opened when the C-Control Pro IDE is started.

Open Maximized Editor Window – When a file is opened the editor window will automatically be
switched to maximum size.
Splashscreen Short Display - The Splashscreen is only displayed until the main window is
opened.
Allow Multiple Instances Of C-Control Pro – When the C-Control Pro interface is started several
times it may create conflicts with regard to the USB interface.

Also here the lists of the "last opened projects" as well as the "last opened files" can be deleted.

90 C-Control Pro Mega Series

© 2011 Conrad Electronic

4.6.4.1 Interfaces

Through a selection box the connection to the application board can be set. USB connections will
start with the prefix "USB" and will then be successively numbered: USB0, USB1, ... Serial
interfaces will be handled equally. They will start with the prefix "COM": COM0, COM1, ..., aso.

By use of the button "Search Interface" all interfaces will be evaluated until the command line
interface of C-Control Pro will react. In order to recognize an application board power must be
supplied and the firmware must not have stalled. It is recommended to switch the power off and on
again prior to the searching action.

The buttons "C-Control Test" and "Hardware Version" allow to immediately see whether or not the
selected interface can sensibly communicate with the C-Control Pro Module.

91IDE

© 2011 Conrad Electronic

4.6.4.2 Internet Update

In order to check if any improvements or error corrections have been issued by Conrad Electronic the
Internet Update can be activated. When the selection box "Update Check Every n Days" is selected
then an update will be searched for in the Internet at an interval of n days at every start of the IDE.
The parameter n can be set in the input field on the right.

The button "Update Check Now" will immediately activate an update search.

 In order to have the Internet update function correctly the MS Internet Explorer must not be in
"Offline" Mode.

If e. g. the Internet access is restricted by a Proxy due to a firewall then the Proxy settings such as
address, user name and password can be entered in this dialog.

 If there are Proxy data set in the MS Internet Explorer then they will be of higher priority and will
thus overwrite the settings in this dialog.

92 C-Control Pro Mega Series

© 2011 Conrad Electronic

4.6.4.3 Terminal

Here you can set the serial parameter for the built in terminal program. For the Port entry an
available serial COM Port can be chosen from. Further the standard baudrates, the number of Data
Bits and Stop Bits, and the Flow Control is selectable.

4.6.4.4 Tools

In the Tool settings the user can insert, delete and edit entries that defines external programs that
can be executed fast and simple from the IDE. The names of the programs can be found in the Tools
pulldown menu and can be started with a single click.

93IDE

© 2011 Conrad Electronic

For each program that is inserted, the user can choose the name, the execution path and the
parameters that are submitted.

4.7 Windows

When there are several windows opened within the editor area they can automatically be arranged
by use of commands in the Window Menu.

Overlap – The windows will be arranged on top of each other with each successive window placed
fractionally lower and more to the right than the preceeding one.
Beneath – The windows are placed vertically beneath each other.
Side By Side – Will arrange the windows next to each other from left to right.
Minimize All – Will minimize all windows to symbol size.
Close – Will close all active windows.

94 C-Control Pro Mega Series

© 2011 Conrad Electronic

4.8 Help

Under menu item Help the Help file can be opened by use of Contents (Key F1).

Menu item Program Version will open the window "Version Information" and will at the same time
copy the contents onto the clipboard.
These informations are important if a Support E-Mail needs to be sent to Conrad Electronic. Since
these informations are automatically placed onto the clipboard when Program Version is called up
the data can easily be added to the end of an E-Mail.

If the user needs to find a certain search term in the Help file the Context Help may be of advantage.
If e. g. in the Editor the cursor stands over the word "AbsDelay" and the correct parameters are
searched for then Context Help should be selected. This function will automatically use the word
under the cursor for a search term and will consequently show the results in the Help File.

The command Context Help is also available in the editor window after a right mouse click.

95IDE

© 2011 Conrad Electronic

Part

5

97Compiler

© 2011 Conrad Electronic

Compiler5

5.1 General Features

This domain provides information on the Compiler’s properties and features which are independent of
the programming language used.

5.1.1 External RAM

The Application Board of Mega128 carries external RAM. This RAM is automatically recognized by
the Interpreter and used for the program to be carried out. For this reason a program memory of
appr. 63848 Bytes rather than appr. 2665 Bytes is available. For this it is not necessary to newly
compile the program.

 If the SRAM is not needed it can be deactivated by JP7 and the ports will be free for other uses.
To deactivate the SRAM the jumper JP7 has to be moved to the left side (orientation: serial interface
shows to the left), such that the left pins of JP7 are connected.

5.1.2 Preprocessor

 The Gnu Generic Preprocessor used here provides some additional functions which are
documented under http://nothingisreal.com/gpp/gpp.html. Only the functions described here however
have also together with the C-Control Pro Compiler been thoroughly tested. Using the here
undocumented functions will thus be at your own risk!

The C-Control development system contains a complete C-Preprozessor. The Preprocessor
processes the source text prior to Compiler start. The following commands are supported:

Definitions

By the command "#define" text constants are defined.

#define symbol text constant

Since the Preprocessor runs ahead of the Compiler at each appearance of symbol in the source text
the symbol will be replaced by text constant.

Example

#define PI 3.141

 If a project consists of several sources then #define is a constant for all source files existing
following the file, in which the constant has been defined. It is thus possible to change the order of
source files in a project.

http://nothingisreal.com/gpp/gpp.html

98 C-Control Pro Mega Series

© 2011 Conrad Electronic

Conditional Compiling

#ifdef symbol
...

#else // optional
...
#endif

It is possible to monitor which parts of the source texts are really being compiled. After a #ifdef
symbol instruction the following text is only compiled when symbol has also been defined by #define
symbol.

If there is an optional #else instruction then the source text will be processed after #else if the
symbol has not been defined.

Insertion of Text

#include path\file name

By this instruction a text file can be inserted into the source code.

 Because of some restrictions in the Preprocessor a path within a #include instruction must not
contain any blank characters!

5.1.2.1 Predefined Symbols

In order to ease the work with different versions of the C-Control Pro series there are a number of
definitions which are set depending on target system and Compiler project options. These constants
can be called up by #ifdef, #ifndef or #if.

Symbol Meaning

 MEGA32 Configuration for Mega 32

 MEGA128 Configuration for Mega 128

 MEGA128CAN Configuration for Mega 128 CAN Bus

 AVR32 Configuration for AVR 32

 MEGA128_ARCH Mega 128 or Mega 128 CAN

 CANBUS_SUPP CAN Bus is supported

 DEBUG Debug Data will be created

 MAPFILE A Memory Layout will be computed

The following constants contain a string. It is sensible to use them in conjunction with text outputs.

Symbol Meaning

 __DATE__ Current Date
 __TIME__ Time of Compiling
 __LINE__ Current Line in Sourcecode

99Compiler

© 2011 Conrad Electronic

 __FILE__ Name of Current Source File
 __FUNCTION__ Current Function Name

Example

Line number, file name and function name will be issued. Since file names may become quite long it
is recommended to dimension character arrays somewhat generous.

char txt[60];

txt=__LINE__;

Msg_WriteText(txt); // Issue Line Number

Msg_WriteChar(13); // LF
txt=__FILE__;

Msg_WriteText(txt); // Issue File Number

Msg_WriteChar(13); // LF
txt=__FUNCTION__;

Msg_WriteText(txt); // Issue Function Name

Msg_WriteChar(13); // LF

5.1.3 Pragma Instructions

By use of the #pragma instruction output and flow of the Compiler can be controlled. The following
commands are authorized:

 #pragma Error "xyz..." An error is created and text "xyz..." is issued

 #pragma Warning "xyz..." A warning is created and text "xyz..." is issued

 #pragma Message "xyz..." The text "xyz..." is issued by the Compiler

Example

These #pragma instructions are often used in conjunction with Preprocessor commands and
Predefined Constants. A classical example is the creation of an error message in case specific
hardware criteria are not met.

#ifdef MEGA128
#pragma Error "Counter Functions not with Timer0 and Mega128"
#endif

5.1.4 Map File

If during compilation a Map File has been generated then the memory size of the used variable can
there be ascertained.

Example

The project CNT0.cprj generates the following Map File during compilation:

100 C-Control Pro Mega Series

© 2011 Conrad Electronic

Global Variable Length Position (RAM Start)

Total Length: 0 bytes

Local Variable Length Position (Stack relative)

Function Pulse()
count 2 4
i 2 0
Total Length: 4 bytes

Function main()
count 2 2
n 2 0
Total Length: 4 bytes

From this list can be seen that no global variables are being used. There are further the two functions
"Pulse()" and "main()". Each one of these functions consumes a memory space of 4 Bytes on local
variables.

5.2 CompactC

One possibility to program the C-Control Pro Mega 32 or Mega 128 is offered by
the programming language CompactC. The Compiler translates the language
CompactC into a Bytecode which is then processed by the Interpreter of the C-
Control Pro. The language volume of CompactC does essentially correspond with
ANSI-C. It is however reduced to some extent since the firmware had to be
implemented in a resource saving way. The following language constructs are
missing:

structs / unions
typedef
enum
constants (const instruction)
pointer Arithmetic

Detailed program examples can be found in directory "Demo Programs" which was installed along
with the design interface. There example solutions can be found for almost every field of purpose.

The following chapter contains a systematic introduction into syntax and semantics of CompactC.

5.2.1 Program

A program consists of a number of instructions (such as "a=5;") which are distributed among various
 Functions. The starting function, which must be present in every program, is the function "main()".
The following is a minimalistic program able to print a number into the output window:

101Compiler

© 2011 Conrad Electronic

void main(void)
{

Msg_WriteInt(42); // the answer to anything
}

Projects

A program can be separated into several files which are combined in a project (see Project
Management). In addition to these project files Libraries can be added to the project which are able
to offer functions used by the program.

5.2.2 Instructions

Instruction

An instruction consists of several reserved command words, identifiers and operators and is at the
end terminated by a semicolon (';'). In order to separate various elements of an instruction there are
spaces in between the instruction elements which are called "Whitespaces". By “spaces“ space
characters, tabulators and line feeds ("C/R and LF") are meant. It is of no consequence whether a
space is built by one or several "Whitespaces".

Simple Instruction:

a= 5;

 An instruction does not necessarily have to completely stand in one line. Since line feeds do
also belong to the space category it is legitimate to separate an instruction across several lines.

if(a==5) // instruction across 2 lines
a=a+10;

Instruction Block

Several instructions can be grouped into a block. Here the block is opened by a left tailed bracket ("{
"), followed by the instructions and closed at the end by a right tailed bracket ("}"). A block does not
necessariliy have to be terminated by a semicolon. I. e., if a block builds the end of an instruction
then the last character in the instruction will be the right tailed bracket.

if(a>5)
{

 a=a+1; // instruction block
 b=a+2;
}

Comments

There are two types of commentaries, which are the single line and the multi line commentaries. The
text within commentaries is ignored by the Compiler.

102 C-Control Pro Mega Series

© 2011 Conrad Electronic

Single line commentaries start with "//" and end up at the line’s end.
Multi line commentaries start with "/*" and end up with "*/".

/* a

multi line

commentary */

// a single line commentary

Identifier

Identifier are the names of Functions or Variables.

Valid characters are letters (A-Z,a-z), numbers (0-9) and the low dash ('_')
An identifier always starts with a letter
Upper and lower case writings are differentiated
Reserved Words are not allowed as identifier
The length of identifiers is unlimited

Arithmetic Expressions

An arithmetic expression is a quantity of values connected by Operators. In this case quantities can
either be Figures, Variables and Functions.

A simple example:

2 + 3

Here the numerical values 2 and 3 are connected by the Operator "+". An arithmetic value again
represents a value. In this case the value is 5.

Further examples:

a - 3

b + f(5)

2 + 3 * 6

Following the rule "Dot before Line" here 3 times 6 is calculated first and then 2 is added. This
priority is in case of operators called precedence. A list of priorities can be found in the Precedence
Table.

 Comparisons too are arithmetic expressions. The comparison operators return a truth value of
"1" or "0", depening on whether the comparison was true or not. The expression "3 < 5" yields the
value "1" (true).

103Compiler

© 2011 Conrad Electronic

Constant Expressions

An expression or portions of an expression can be constant. Portions of an expression can already
be calculated during Compiler runtime.

So e. g. the expression

12 + 123 - 15

is combined by the Compiler to

120.

In some cases expressions must be constant in order to be valid. E. g. also see Declaration of Array
 Variables.

5.2.3 Data Types

Values always are of a certain data type. Integer values (integral values; whole numbered values) in
CompactC are of the 8, 16 or 32 Bit wide data type, floating point values are always 4 byte long.

Data Type Sign Range Bit

 char Yes -128 ... +127 8

 unsigned char No 0 ... 255 8 8

 byte No 0 ... 255 8 8

 int Yes -32768 ... +32767 16

 unsigned int No 0 ... 65535 16

 word No 0 ... 65535 16

 long (Mega128) Yes -2147483648 ...
2147483647

32

 unsigned long
(Mega128)

No 0 ... 4294967295 32

 dword (Mega128) No 0 ... 4294967295 32

 float Yes ±1.175e-38 to ±3.402e38 32

As one can see the data types "unsigned char" and byte, "unsigned int" and
word as well as "unsigned long" and dword are identical.

 Due to size restrictions of the interpreter, 32-Bit Integer are not available on
the Mega32.

Strings

There is no explicit "String" data type. A string is based on a character array. The size of the array
must be chosen in such a way that all characters of the string fit into the character array.
Additionally some space is needed for a terminating character (decimal Zero) in order to indicate the
end of the character string.

104 C-Control Pro Mega Series

© 2011 Conrad Electronic

Type Conversion

In arithmetic expressions it is very often the case that individual values are not of the same type. So
the data types of the following expression are combined (a is of type integer variable).

a + 5.5

In this case a is first converted into the data type float and then 5.5 is added. The
data type of the result is also float. For data type conversion there are the following
rules:

If in a linkage of 8 Bit or 16 Bit integer values one of the two data types is sign
afflicted ("signed") then the result of the expression is also sign afflicted. I. e. the
operation is executed "signed".

If one of the operands is of the float type then the result is also of the float type. If
one of the two operands happens to be of the 8 Bit or 16 Bit data type then it will be
converted into a float data type prior to the operation.

5.2.4 Variables

Variables can take on various values depending on the Data Type by which they have been defined.
A variable definition appears as follows:

Type Variable Name;

When several variables of the same type need to be defined then these variables can be stated
separated by commas:

Typ Name1, Name2, Name3, ...;

As types are allowed: char, unsigned char, byte, int, unsigned int, word, long, dword, float

Examples:

int a;

int i,j;

float xyz;

Integer variables may have decimal figure values or Hex values assigned to. With Hex values the
characters "0x" will be placed ahead of the figure. Binary numbers can be created with the prefix "
0b". With variables of the sign afflicted data type negative decimal figures can be assigned to by
putting a minus sign ahead of the figure.

 Numbers without period or exponent are normally of type signed integer. To explicitly define an
unsigned integer write an "u" direct after the number. To declare a number to be 32-Bit, either the
value is greater 65535 or put an "l" after the number. Can be combined with "u" from unsigned.

Examples:

105Compiler

© 2011 Conrad Electronic

word a;
int i,j;

a=0x3ff; // hex digits are always unsigned
x=0b1001; // binary number
a=50000u; // unsigned
a=100ul; // unsigned 32 Bit (dword)
i=15; // default is signed
j=-22; // signed

Floating Point Figures (data type float) may contain a decimal point and an exponent.

float x,y;

x=5.70;
y=2.3e+2;
x=-5.33e-1;

sizeof Operator

By the operator sizeof() the number of Bytes a variable takes up in memory can be determined.

Examples:

int s;
float f:

s=sizeof(f); // the value of s is 4

 With arrays only the Byte length of the basic data type is returned. On order to calculate the
memory consumption of the array the value must be multiplied by the number of elements.

Array Variables

If behind the name, which in case of a variable definition is set in brackets, a figure value is written
then an array has been defined. An array will arrange the space for a defined variable manifold in
memory. With the following example definition

int x[10];

a tenfold memory space has been arranged for variable x. The first memory space can be addressed
by X[0], the second by x[1], the third by x[2], … up to x[9]. When defining of course other index

dimensions can also be chosen. The memory space of C-Control Pro is the only limit.

Multi dimensional arrays can also be declared by attaching further brackets during variable definition:

int x[3][4]; // array with 3*4 entries

int y[2][2][2]; // array with 2*2*2 entries

 Arrays may in CompactC have up to 16 indices (dimensions). The maximum value for an index

106 C-Control Pro Mega Series

© 2011 Conrad Electronic

is 65535. The indices of arrays are in any case zero based, i .e. each index will start with a 0.

 Only if the compiler option "Check Array Index Limits" is set, there will be a verification whether
or not the defined index limits of an array have been exceeded. Otherwise, if an index becomes too
large during program execution the access to alien variables will be tried which in turn may create a
good chance for a program breakdown.

Table support by predefined Arrays

Since version 2.0 of the IDE arrays can be predefined with values:

byte glob[10] = {1,2,3,4,5,6,7,8,9,10};
flash byte fglob[2][2]={10,11,12,13};

void main(void)
{
 byte loc[5]= {2,3,4,5,6};
 byte xloc[2][2];

 xloc= fglob;
}

Because there is more flash memory than RAM available, it is possible with the flash keyword to
define data that are written in the flash memory only. These data can be copied to a RAM array with
same dimensions with an assignment operation. In this example this is done through "xloc= fglob".
This kind of assignment is not available in normal "C".

Direct Access to flash Array entries

With version 2.12 it is possible to access single entries in flash arrays:

flash byte glob[10] = {1,2,3,4,5,6,7,8,9,10};

void main(void)
{
 int a;

 a= glob[2];
}

 There is still one limitation: Only references to arrays that lie in RAM can be passed as function
parameters. This is not possible with references to flash arrays.

Strings

There is no explicit "String" data type. A string is based on a character array. The size of the array
must be chosen in such a way that all characters of the string fit into the character array.
Additionally some space is needed for a terminating character (decimal Zero) inorder to indicate the
end of the character string.

107Compiler

© 2011 Conrad Electronic

Example for a character string with a 20 character maximum:

char str1[21];

As an exception char arrays may have character strings assigned to. Here the character string is
placed between quotation marks.

str1="hallo world!";

 Strings cannot be assigned to multi dimensional Char arrays. There are however tricks for
advanced users:

char str_array[3][40];
char single_str[40];

single_str="A String";

Str_StrCopy(str_array,single_str,40); // will copy single_str in the second string of str_array

This will work because with a gap of 40 characters after the first string there will in str_array be room
for the second string.

Visibility of Variables

When variables are declared outside of functions then they will have global visibility. I. e. they can be
addressed from every function. Variable declarations within functions produce local variables. Local
variables can only be reached within the function. An example:

int a,b;

void func1(void)
{
 int a,x,y;

 // global b is accessable

 // global a is not accessable since concealed by local a

 // local x,y are accessable

 // u is not accessable since local to function main
}

void main(void)
{
 int u;

 // globale a,b are accessable

 // local u is accessable

 // x,y not accessable since local to function func1
}

Global variables have a defined memory space which is available throughout the entire program run.

 At program start the global variables will be initialized by zero. Local Variables get not initialized

108 C-Control Pro Mega Series

© 2011 Conrad Electronic

at the begin of a function!

Local variables will during calculation of a function be arranged on the stack. I. e. local variables
exist in memory only during the time period in which the function is executed.

If with local variables the same name is selected as with a global variable then the local variable will
conceal the global variable. While the program is working in the function where the identically named
variable has been defined the global variable cannot be addressed.

Static Variables

With local variables the property static can be placed for the data type.

void func1(void)
{
 static int a;
}

In opposition to normal local variables will static variables still keep their value even if the function is
left. At a further call-up of the function the static variable will have the same contents as when leaving
the function. In order to have the contents of a static variable defined at first access the static
variables will equally to global variables at program start also be initialized by zero.

5.2.5 Operators

Priorities of Operators

Operators separate arithmetic expressions into partial expressions. The operators are then evaluated
in the succession of their priorities (precedence). Expressions with operators of identical precedence
will be calculated from left to right.
Example:

i= 2+3*4-5; // result 9 => first 3*4, then +2, finally -5

The succession of the execution can be influenced by setting of parenthesis. Parenthesis have the
highest priority.
If the last example should strictly be calculated from left to right, then:

i= (2+3)*4-5; // result 15 => first 2+3, then *4, finally -5

A list of priorities can be found in Precedence Table.

5.2.5.1 Arithmetic Operators

All arithmetic operators with the exception of Modulo are defined for Integer and Floating Point data
types. Modulo is restricted to data type Integer only.

 It must be observed that in an expression the figure 7 will have an Integer data type assigned to
it. If a figure of data type float should be explicitly created then a decimal point has to be added: 7.0

109Compiler

© 2011 Conrad Electronic

Operator Description Example Result

+ Addition 2+1
3.2 + 4

3
7.2

- Subtraction 2 - 3
22 - 1.1e1

-1
11

* Multiplication 5 * 4 20
/ Division 7 / 2

7.0 / 2
3

3.5
% Modulo 15 % 4

17 % 2
3
1

- Negative Sign -(2+2) -4

5.2.5.2 Bit Operators

Bit operators are only allowed for Integer data types

Operator Description Example Result

& And 0x0f & 3
0xf0 & 0x0f

3
0

| Or 1 | 3
0xf0 | 0x0f

3
0xff

^ exclusive Or 0xff ̂0x0f
0xf0 ̂0x0f

0xf0
0xff

~ Bit inversion ~0xff
~0xf0

0
0x0f

5.2.5.3 Bit-Shift Operators

Bit-Shift operators are only allowed for Integer data types. With a Bit-Shift operation a 0 will always
be moved into one end.

Operator Description Example Result

<< shift to left 1 << 2
3 << 3

4
24

>> shift to right 0xff >> 6
16 >> 2

3
4

5.2.5.4 In- /Decrement Operators

Incremental and decremental operators are only allowed for variables with Integer data types.

110 C-Control Pro Mega Series

© 2011 Conrad Electronic

Operator Description Example Result

variable++ first variable value, after access variable
 gets incremented by one (postincrement)

a++ a

variable-- first variable value, after access variable
 gets decremented by one (postdecrement)

a-- a

++variable value of the variable gets incremented by
 one before access (preincrement)

++a a+1

--variable value of the variable gets decremented by
 one before access (predecrement)

--a a-1

5.2.5.5 Comparison Operators

Comparison operators are allowed for float and Integer data types.

Operator Description Example Result

< smaller 1 < 2
2 < 1
2 < 2

1
0
0

> greater -3 > 2
3 > 2

0
1

<= smaller or equal 2 <= 2
3 <= 2

1
0

>= greater or equal 2 >= 3
3 >= 2

0
1

== equal 5 == 5
1 == 2

1
0

!= not equal 2 != 2
2 != 5

0
1

5.2.5.6 Logical Operators

Logical operators are only allowed for Integer data types. Any value unequal null is meant to be a
logical 1. Only null is valid as logical 0.

Operator Description Example Result

&& logical And 1 && 1
5 && 0

1
0

|| logical Or 0 || 0
1 || 0

0
1

! logical Not !2
!0

0
1

111Compiler

© 2011 Conrad Electronic

5.2.6 Control Structures

Control structures allow to change the program completion depending on expressions, variables or
external influences.

5.2.6.1 Conditional Valuation

With a conditional valuation expressions can be generated which will be conditionally calculated.
The form is:

(Expression1) ? Expression2 : Expression3

The result of this expression is expression2, if expression1 had been calculated as unequal 0,
otherwise the result is expression 3.

Examples:

a = (i>5) ? i : 0;

a= (i>b*2) ? i-5 : b+1;

while(i> ((x>y) ? x : y)) i++;

5.2.6.2 do .. while

With a do .. while construct the instructions can depending on a condition be repeated in a loop:

do Instruction while(Expression);

The instruction or the Instruction Block is being executed. At the end the Expression is evaluated. If
the result is unequal 0 then the execution of the expression will be repeated. The entire procedure
will constantly be repeated until the Expression takes on the value 0.

Example:

do
a=a+2;
while(a<10);

do
{
 a=a*2;
 x=a;
} while(a);

 The essential difference between the do .. while loop and the normal while loop is the fact that
in a do .. while loop the instruction is executed at least once.

112 C-Control Pro Mega Series

© 2011 Conrad Electronic

break Instruction

A break instruction will leave the loop and the program execution will start with the next instruction
after the do .. while loop.

continue Instruction

When executing continue within a loop there will immediately be a new calculation of the
Expression. Depending on the result the loop will be repeated at unequal 0. At a result of 0 the loop
will be terminated.

Example:

do
{
 a++;

 if(a>10) break; // will terminate loop

} while(1); // endless loop

5.2.6.3 for

A for loop is normally used to program a definite number of loop runs.

for(Instruction1; Expression; Instruction2) Instruction3;

At first Instruction1 will be executed which normally contains an initialization. Following the
evaluation of the Expression takes place. If the Expression is unequal 0 Instruction2 and Instruction3
will be executed and the loop will repeat itself. When Expression reaches the value 0 the loop will be
terminated. As with other loop types at Instruction3 an Instruction Block can be used instead of a
single instruction.

for(i=0;i<10;i++)
{
 if(i>a) a=i;
 a--;
}

 It must be observed that variable i will within the loop run through values 0 through 9 rather than 1
through 10!

If a loop needs to be programmed with a different step width Instruction2 needs to be modified
accordingly:

for(i=0;i<100;i=i+3) // variable i does now increment in steps to 3
{
 a=5*i;
}

113Compiler

© 2011 Conrad Electronic

break Instruction

A break instruction will leave the loop and the program execution starts with the next instruction
after the for loop.

continue Instruction

continue will immediately initialize a new calculation of the Expression. Depending on the result
Instruction2 will be executed at unequal 0 and the loop will repeat itself. A result of 0 will terminate
the loop.

Example:

for(i=0;i<10;i++)
{
 if(i==5) continue;
}

5.2.6.4 goto

Even though it should be avoided within structured programming languages, it is possible with goto
to jump to a label within a procedure:

// for loop with realized with goto
void main(void)
{
 int a;

 a=0;
label0:
 a++;
 if(a<10) goto label0;
}

5.2.6.5 if .. else

An if instruction does have the following syntax:

if(Expression) Instruction1;
else Instruction2;

After the if instruction an Arithmetic Expression will follow in parenthesis. If this Expression is
evaluated as unequal 0 then Instruction1 will be executed. By use of the command word else an
alternative Instruction2 can be defined which will be executed when the Expression has been
calculated as 0. The addition of an else instruction is optional and is not necessary.

Examples:

114 C-Control Pro Mega Series

© 2011 Conrad Electronic

if(a==2) b++;

if(x==y) a=a+2;
else a=a-2;

An Instruction Block can be defined instead of a single instruction.

Examples:

if(x<y)
{
 c++;
 if(c==10) c=0;
}
else d--;

if(x>y)
{
 a=b*5;
 b--;
}
else
{
 a=b*4;
 y++;
}

5.2.6.6 switch

If depending on the value of an expression various commands should be executed a switch
instruction is an elegant solution:

switch(Expression)
{
 case constant_1:
 Instruction_1;
 break;

 case constant_2:
 Instruction_2;
 break;
 .
 .
 case constant_n:
 Instruction_n;
 break;

 default: // default is optional
 Instruction_0;
};

The value of the Expression is calculated. Then the program execution will jump to the constant

115Compiler

© 2011 Conrad Electronic

corresponding to the value of the Expression and will continue the program from there. If no constant
corresponds to the value of the expression the switch construct will be left.

If a default is defined within a switch instruction then the instructions after default will be executed
if no constant corresponding to the value of the instruction has been found.

Example:

switch(a+2)
{
 case 1:
 b=b*2;
 break;

 case 5*5:
 b=b+2;
 break;

 case 100&0xf:
 b=b/c;
 break;

 default:
 b=b+2;
}

 The execution of a switch statement is highly optimized. All values are stored inside a
jumptable. Therefore exists a constraint that the calculated Expression is of type signed 16 Bit
Integer (-32768 .. 32767). For this reason a e.g. "case > 32767" is rather senseless.

break Instruction

A break will leave the switch instruction. If break is left out ahead of case then the instruction will
be executed even when a jump to the preceeding case does take place:

switch(a)
{
 case 1:
 a++;

 case 2:

 a++; // is also executed at a value of a==1

 case 3:

 a++; // is also executed at a value of a==1 or a==2
}

In this example all three "a++" instructions are executed if a equals 1.

116 C-Control Pro Mega Series

© 2011 Conrad Electronic

5.2.6.7 while

With a while instruction the instructions can depending on a condition be repeated in a loop.

while(Expression) Instruction;

At first the Expression is evaluated. If the result is unequal 0 then the Expression is executed. After
that the Expression is again calculated and the entire procedure will constantly be repeated until the
Expression takes on the value 0. An Instruction Block can be defined instead of a single instruction.

Example:

while(a<10) a=a+2;

while(a)
{
 a=a*2;
 x=a;
}

break Instruction

If a break is executed within the loop then the loop will be left and the program execution starts with
the next instruction after the while loop.

continue Instruction

An execution of continue within a loop will immediately initialize a new calculation of the Expression
. Depending on the result the loop will be repeated at unequal 0. A result of 0 will terminate the loop.

Example:

while(1) // endless loop
{
 a++;

 if(a>10) break; // will terminate the loop
}

5.2.7 Functions

In order to structure a larger program it is separated into several sub-functions.
This not only improves the readability but allows to combine all program
instructions repeatedly appearing in functions. A program does in any case
contain the function "main", which is started in first place. After that other
functions can be called up.
A simple example:

117Compiler

© 2011 Conrad Electronic

void func1(void)
{

 // instructions in function func1
 .
 .
}

void main(void)
{

 // function func1 will be called up twice
 func1();
 func1();
}

Parameter Passing

In order to enable functions to be flexibly used they can be set up parametric. To do this the
parameters for the function are separated by commas and passed in parenthesis after the function
name. Similar to the variables declaration first the data type and then the parameter name are
stated. If no parameter is passed then void has to be set into the parenthesis.
An example:

void func1(word param1, float param2)
{

 Msg_WriteHex(param1); // first parameter output

 Msg_WriteFloat(param2); // second parameter output
}

 Similar to local variables passed parameters are only visible within the function itself.

In order to call up function func1 by use of the parameters the parameters for call up should be
written in the same succession as they have been defined in func1. If the function does not get
parameters the parenthesis will stay empty.

void main(void)
{
 word a;
 float f;

 func1(128,12.0); // you can passs numerical constants
 a=100;
 f=12.0;

 func1(a+28,f); // or yet variables too and even numerical expressions
}

 When calling up a function all parameters must always be stated. The following call up is
inadmissible:

func1(); // func1 gets 2 parameters!

func1(128); // func1 gets 2 parameters!

118 C-Control Pro Mega Series

© 2011 Conrad Electronic

Return Parameters

It is not only possible to pass parameters. A function can also offer a return value. The data type of
this value is during function definition entered ahead of the function name. If no value needs to be
returned the data type used will be void.

int func1(int a)
{
 return a-10;
}

The return value is within the function stated as instruction "return Expression". If there is a function
of the void type then the return instruction can be used without parameters in order to leave the
function.

References

Since it is not possible to pass on arrays as parameters the access to parameters is possible
through references. For this a pair of brackets is written after the parameter names in the parameter
declaration of a function.

int StringLength(char str[])
{
 int i;

 i=0;

 while(str[i]) i++; // repeat character as long as unequal zero
 return(i);
}

void main(void)
{
 int len;
 char text[15];

 text="hello world";
 len=StringLength(text);
}

In main the reference of text is presented as parameters to the function StringLength. If in a function
a normal parameter is changed then the change is not visible outside this function. With references
this is different. Through parameter str in StringLength the contents of text can be changed since str
is only the reference (pointer) to the array variable text.

 Presently arrays can only be passed "by Reference"!

Pointer Arithmetic

In the current C-Control Pro software also arithmetic on a reference (pointer) is permitted, as the
following example shows. The arithmetic is limited to addition, subtraction, multiplication and

119Compiler

© 2011 Conrad Electronic

division.

void main(void)
{
 int len;
 char text[15];

 text="hello world";
 len=StringLength(text+2*3);
}

 Pointer arithmetic is currently experimental and may possibly still contain errors.

Strings as Parameter

Since Version 2.0 of the IDE it is possible to call functions with a string as parameter. The called
function gets the string as reference. Since references are RAM based and predefined strings are
stored in the flash memory, the compiler creates internally an anonymous variable, and copies the
data from flash into memory.

int StringLength(char str[])
{
...
}

void main(void)
{
 int len;

 len=StringLength("hallo welt");
}

5.2.8 Tabellen

5.2.8.1 Operator Precedence

Rang Operator

13 ()
12 ++ -- ! ~ - (negatives Vorzeichen)
11 * / %
10 + -
9 << >>
8 < <= > >=
7 == !=
6 &
5 ^
4 |
3 &&

120 C-Control Pro Mega Series

© 2011 Conrad Electronic

2 ||
1 ? :

5.2.8.2 Operators

 Arithmetische Operatoren

+ Addition

- Subtraktion

* Multiplikation

/ Division

% Modulo

- negatives Vorzeichen

 Vergleichsoperatoren

< kleiner

> größer

<= kleiner gleich

>= größer gleich

== gleich

!= ungleich

 Bitschiebeoperatoren

<< um ein Bit nach links schieben

>> um ein Bit nach rechts schieben

 Inkrement/Dekrement Operatoren

++ Post/Pre Inkrement

-- Post/Pre Dekrement

 Logische Operatoren

&& logisches Und

|| logisches Oder

! logisches Nicht

 Bitoperatoren

& Und
| Oder

121Compiler

© 2011 Conrad Electronic

^ exclusives Oder
~ Bitinvertierung

5.2.8.3 Reserved Words

The following words are reserved and cannot be used as identifier:

break byte case char continue

default do else false float

for goto if int return

signed static switch true unsigned

void while word dword long

122 C-Control Pro Mega Series

© 2011 Conrad Electronic

5.3 BASIC

The second programming language for the C-Control Pro Mega Module is BASIC. The Compiler
translates the BASIC commands into a Bytecode which is then processed by the C-Control Pro
Interpreter. The language volume of the BASIC dialect used here corresponds to a large extent to the
industry standard of the large software suppliers.

The following language constructs are missing:

Object oriented programming
Structures
Constants

Detailed program examples can be found in directory "Demo Programs" which was installed along
with the design interface. There example solutions can be found for almost every field of purpose of
the C-Control Pro Module.

The following chapters offer a systematical introduction to syntax and semantics of C-Control Pro
BASIC.

5.3.1 Program

A program consists of a number of instructions (such as e. g. "a=5;") which are distributed among
various Functions. The starting function, which must be present in every program, is the function "
main()". The following is a simplistic program able to print a number into the output window:

Sub main()

Msg_WriteInt(42) // the answer to anything
End Sub

Projects

A program can be separated into several files which are combined in a project (see Project
Management). In addition to these project files Libraries can be added to the project which are able
to offer functions used by the program.

123Compiler

© 2011 Conrad Electronic

5.3.2 Instructions

Instruction

An instruction consists of several reserved command words, identifiers and operators and is at the
end terminated by the end of the line. In order to separate various elements of an instruction there
are spaces in between the instruction elements which are called "Whitespaces". By “spaces“ space
characters, tabulators and line feeds ("C/R and LF") are meant. It is of no consequence whether a
space is built by one or several "Whitespaces".

Simple Instruction:

a= 5

 An instruction does not necessarily have to completely stand in one line. By use of the "_"
character (low dash) it is possible to extend the instruction into the next line.

If a=5 _ ' instruction across two lines
a=a+10

 It is also possible to place more than one instruction into the same line. The ":" character (colon)
will then separate the individual instructions. For reason of better readability however this option
should rather seldom be used.

a=1 : b=2 : c=3

Comments

Comments

There are two types of commentaries, which are the single line and the multi line commentaries. The
text within commentaries is ignored by the Compiler.

Single line commentaries start with a single quotation mark and end up at the line’s end.
Multi line commentaries start with "/*" and end up with "*/".

/* a

multi line

commentary */

' a single line commentary

Identifier

Identifiers are the names of Functions or Variables.

Valid characters are letters (A-Z,a-z), numbers (0-9) and the low dash ('_')
An identifier always starts with a letter
Upper and lower case writings are differentiated
Reserved Words are not allowed as identifiers

124 C-Control Pro Mega Series

© 2011 Conrad Electronic

The length of an identifier is unlimited

Arithmetic Expressions

An arithmetic expression is a quantity of values connected by Operators. In this case quantities can
either be Figures, Variables or Functions.

A simple example:

2 + 3

Here the numerical values 2 and 3 are connected by the Operator "+". An arithmetic value again
represents a value. In this case the value is 5.

Further examples:

a - 3

b + f(5)

2 + 3 * 6

Following the rule "Dot before Line" here 3 times 6 is calculated first and then 2 is added. This
priority is in case of operators called precedence. A list of priorities can be found in the Precedence
Table.

 Comparisons too are arithmetic expressions. The comparison operators return a truth value of
"1" or "0", depending on whether the comparison was true or not. The expression "3 < 5" yields the
value "1" (true).

Constant Expressions

An expression or portions of an expression can be constant. Portions of an expression can already
be calculated during Compiler runtime.

So e. g. the expression

12 + 123 - 15

is combined by the Compiler to

120.

In some cases expressions must be constant in order to be valid. E. g. also see Declaration of Array
 Variables.

125Compiler

© 2011 Conrad Electronic

5.3.3 Data Types

Values always are of a certain data type. Integer values (integral values; whole numbered values) in
BASIC are of the 8, 16 or 32 Bit wide data type, floating point values are always 4 byte long.

Data Type Sign Range Bit

 Char Yes -128 ... +127 8

 Byte No 0 ... 255 8

 Integer Yes -32768 ... +32767 16

 UInteger No 0 ... 65535 16

 Word No 0 ... 65535 16

 Long (Mega128) Yes -2147483648 ... 2147483647 32

 ULong
(Mega128)

No 0 ... 4294967295 32

 Single Yes ±1.175e-38 to ±3.402e38 32

 Due to size restrictions of the interpreter, 32-Bit Integer are not available on
the Mega32.

Strings

There is no explicit "String" data type. A string is based on a character array. The size of the array
must be chosen in such a way that all characters of the string fit into the character array.
Additionally some space is needed for a terminating character (decimal Zero) in order to indicate the
end of the character string.

Type Conversion

In arithmetic expressions it is very often the case that individual values are not of the same type. So the data types of the following expression are combined (a is of type integer variable).

a + 5.5

In this case a is first converted into the Single data type and then 5.5 is added.
The data type of the result is also Single. For data type conversion there are the
following rules:

If in a linkage of 8 Bit or 16 Bit integer values one of the two data types is sign
afflicted then the result of the expression is also sign afflicted.

If one of the operands is of the Single type then the result is also of the Single type. If
one of the two operands happens to be of the 8 Bit or 16 Bit data type then it will be
converted into a Single data type prior to the operation.

5.3.4 Variables

Variables can take on various values depending on the Data Type by which they have been defined.
A variable definition appears as follows:

126 C-Control Pro Mega Series

© 2011 Conrad Electronic

Dim Variable Name As Type

When several variables of the same type need to be defined then these variables can be stated
separated by commas:

Dim Name1, Name2, Name3 As Integer

As types are allowed: Char, Byte, Integer, Word, Single

Examples:

Dim a As Integer

Dim i,j As Integer

Dim xyz As Single

Integer variables may have decimal figure values or Hex values assigned to. With Hex values the
characters "&H" will be placed ahead of the figure. Just as with CompactC it is also allowed to place
the prefix "0x" ahead of the Hex values. Binary numbers can be created with the prefix "0b". With
variables of the sign afflicted data type negative decimal figures can be assigned to by putting a
minus sign ahead of the figure.

 Numbers without period or exponent are normally of type signed integer. To explicitly define an
unsigned integer write an "u" direct after the number. To declare a number to be 32-Bit, either the
value is greater 65535 or put an "l" after the number. Can be combined with "u" from unsigned.

Examples:

Dim a As Word
Dim i,j As Integer

a=&H3ff ' hex numbers are always unsigned
a=50000u ' unsigned
x=0b1001 ' binary number
a=100ul ' unsigned 32 Bit (ULong)
i=15 ' default is signed
j=-22 ' signed
a=0x3ff ' hex numbers are always unsigned

Floating Point Figures (data type Single) may contain a decimal point and an exponent.

Dim x,y As Single

x=5.70
y=2.3e+2
x=-5.33e-1

SizeOf Operator

By the operator SizeOf() the number of Bytes a variable takes up in memory can be determined.

Examples:

127Compiler

© 2011 Conrad Electronic

Dim s As Integer
Dim f As Single

s=SizeOf(f) ' the value of s is 4

 With arrays only the Byte length of the basic data type is returned. On order to calculate the
memory consumption of the array the value must be multiplied by the number of elements.

Array Variables

If behind the name, which in case of a variable definition is set in parenthesis, a figure value is written
then an array has been defined. An array will arrange the space for a defined variable manifold in
memory. With the following example definition

Dim x(10) As Integer

a tenfold memory space has been arranged for variable x. The first memory space can be addressed
by X[0], the second by x[1], the third by x[2], … up to x[9]. When defining of course other index

dimensions can also be chosen. The memory space of C-Control Pro is the only limit.

Multi dimensional arrays can also be declared by attaching further indices during variable definition,
which have to be separated by commas,:

Dim x(3,4) As Integer ' array with 3*4 entries

Dim y(2,2,2) As Integer ' array with 2*2*2 entries

 Arrays may in BASIC have up to 16 indices (dimensions). The maximum value for an index is
65535. The indices of arrays are in any case zero based, i .e. each index will start with a 0.

 Only if the compiler option "Check Array Index Limits" is set, there will be a verification whether
or not the defined index limits of an array have been exceeded. Otherwise, if an index becomes too
large during program execution the access to alien variables will be tried which in turn may create a
good chance for a program breakdown.

Table support by predefined Arrays

Since version 2.0 of the IDE arrays can be predefined with values:

Dim glob(10) = {1,2,3,4,5,6,7,8,9,10} As Byte
Flash fglob(2,2)={10,11,12,13} As Byte

Sub main()
 Dim loc(5)= {2,3,4,5,6} As Byte
 Dim xloc(2,2) As Byte

 xloc= fglob
End Sub

Because there is more flash memory than RAM available, it is possible with the flash keyword to

128 C-Control Pro Mega Series

© 2011 Conrad Electronic

define data that are written in the flash memory only. These data can be copied to a RAM array with
same dimensions with an assignment operation. In this example this is done through "xloc= fglob".

Direct Access to flash Array entries

With version 2.12 it is possible to access single entries in flash arrays:

Flash glob(10) = {1,2,3,4,5,6,7,8,9,10} As Byte

Sub main()
 Dim a As Byte

 a= glob(2)
End Sub

 There is still one limitation: Only references to arrays that lie in RAM can be passed as function
parameters. This is not possible with references to flash arrays.

Strings

There is no explicit "String" data type. A string is based on an array of data type Char. The size of
the array must be chosen in such a way that all characters of the string fit into the character array.
Additionally some space is needed for a terminating character (decimal Zero) inorder to indicate the
end of the character string.

Example for a character string with a 20 character maximum:

Dim str1(21) As Char

As an exception Char arrays may have character strings assigned to. Here the character string is
placed between quotation marks.

str1="hallo world!"

 Strings cannot be assigned to multi dimensional Char arrays. There are however tricks for
advanced users:

Dim str_array(3,40) As Char
Dim Single_str(40) As Char

Single_str="A String"
Str_StrCopy(str_array,Single_str,40) // will copy Single_str in the second string of str_array

This will work because with a gap of 40 characters after the first string there will in str_array be room
for the second string.

Visibility of Variables

When variables are declared outside of functions then they will have global visibility. I. e. they can be

129Compiler

© 2011 Conrad Electronic

addressed from every function. Variable declarations within functions produce local variables. Local
variables can only be reached within the function. An example:

Dim a,b As Integer

Sub func1()
Dim a,x,y As Integer
 // global b is accessible
 // global a is not accessible since concealed by local a
 // local x,y is accessible
 // u is not accessible since local to function main
End Sub

Sub main()
 Dim u As Integer
 // global a,b is accessible
 // local u is accessible
 // x,y u is not accessible since local to function main
End Sub

Global variables have a defined memory space which is available throughout the entire program run.

 At program start the global variables will be initialized by zero. Local Variables get not initialized
at the begin of a function!

Local variables will during calculation of a function be arranged on the stack. I. e. local variables
exist in memory only during the time period in which the function is executed.

If with local variables the same name is selected as with a global variable then the local variable will
conceal the global variable. While the program is working in the function where the identically named
variable has been defined the global variable cannot be addressed.

Static Variables

With local variables the property Static can be placed for the data type.

Sub func1()
 Static a As Integer
End Sub

In opposition to normal local variables will static variables still keep their value even if the function is
left. At a further call-up of the function the static variable will have the same contents as when leaving
the function. In order to have the contents of a Static variable defined at first access the static
variables will equally to global variables at program start also be initialized by zero.

5.3.5 Operators

Priorities of Operators

Operators separate arithmetic expressions into partial expressions. The operators are then evaluated

130 C-Control Pro Mega Series

© 2011 Conrad Electronic

in the succession of their priorities (precedence). Expressions with operators of identical precedence
will be calculated from left to right.
Example:

i= 2+3*4-5 ' result 9 => first 3*4, then +2, finally -5

The succession of the execution can be influenced by setting of parenthesis. Parenthesis have the
highest priority.
If the last example should strictly be calculated from left to right, then:

i= (2+3)*4-5 ' result 15 => first 2+3, then *4, finally -5

A list of priorities can be found in Precedence Table.

5.3.5.1 Arithmetic Operators

All arithmetic operators with the exception of Modulo are defined for Integer and Floating Point data
types. Modulo is restricted to data type Integer only.

 It must be observed that in an expression the figure 7 will have an Integer data type assigned to
it. If a figure of data type Single should be explicitly created then a decimal point has to be added:
7.0

Operator Description Example Result

+ Addition 2+1
3.2 + 4

3
7.2

- Subtraction 2 - 3
22 - 1.1e1

-1
11

* Multiplication 5 * 4 20

/ Division 7 / 2
7.0 / 2

3
3.5

Mod Modulo 15 Mod 4
17 Mod 2

3
1

- Negative Sign -(2+2) -4

5.3.5.2 Bitoperators

Bit operators are only allowed for Integer data types

Operator Description Example Result

And And &H0f And 3
&Hf0 And &H0f

3
0

Or Or 1 Or 3
&Hf0 Or &H0f

3
&Hff

Xor exclusive Or &Hff Xor &H0f &Hf0

131Compiler

© 2011 Conrad Electronic

&Hf0 Xor &H0f &Hff
Not Bit inversion Not &Hff

Not &Hf0
0

&H0f

 All these Operators work arithmetically: E.g. Not &H01 = &Hfe. Both values are evaluated to
true in an If expression. This is different to a logical Not operator, where Not &H01 = &H00.

5.3.5.3 Bit-Shift Operators

Bit-Shift operators are only allowed for Integer data types. With a Bit-Shift operation a 0 will always
be moved into one end.

 Operator Description Example Result

<< shift to left 1 << 2
3 << 3

4
24

>> shift to right &Hff >> 6
16 >> 2

3
4

5.3.5.4 In- /Decrement Operators

Incremental and decremental operators are only allowed for variables with Integer data types.

Operator Description Example Result

variable++ first variable value, after access variable
 gets incremented by one (postincrement)

a++ a

variable-- first variable value, after access variable
 gets decremented by one (postdecrement)

a-- a

++variable value of the variable gets incremented by
 one before access (preincrement)

++a a+1

--variable value of the variable gets decremented by
 one before access (predecrement)

--a a-1

 These operators are normally not a part of a Basic dialect and have their origin in the world of C
inspired languages.

5.3.5.5 Comparison Operators

Comparison operators are allowed for Single and Integer data types.

132 C-Control Pro Mega Series

© 2011 Conrad Electronic

Operator Description Example Result

< smaller 1 < 2
2 < 1
2 < 2

1
0
0

> greater -3 > 2
3 > 2

0
1

<= smaller or equal 2 <= 2
3 <= 2

1
0

>= greater or equal 2 >= 3
3 >= 2

0
1

= equal 5 = 5
1 = 2

1
0

<> not equal 2 <> 2
2 <> 5

0
1

5.3.6 Control Structures

Control structures allow to change the program completion depending on expressions, variables or
external influences.

5.3.6.1 Do Loop While

With a Do ... Loop While construct the instructions can depending on a condition be repeated in a
loop:

Do
 Instructions
Loop While Expression

The instructions are being executed. At the end the Expression is evaluated. If the result is unequal
0 then the execution of the expression will be repeated. The entire procedure will constantly be
repeated until the Expression takes on the value 0.

Examples:

Do
 a=a+2
Loop While a<10

Do
 a=a*2
 x=a
Loop While a

 The essential difference between the Do Loop While loop and the normal Do While loop is the
fact that in a Do Loop While loop the instruction is executed at least once.

133Compiler

© 2011 Conrad Electronic

Exit Instruction

An Exit instruction will leave the loop and the program execution starts with the next instruction after
the Do Loop While loop.

Example:

Do
 a=a+1
 If a>10 Then
 Exit ' Will terminate loop
 End If
Loop While 1 ' Endless loop

5.3.6.2 Do While

With a while instruction the instructions can depending on a condition be repeated in a loop:

Do While Expression
 Instructions
End While

At first the Expression is evaluated. If the result is unequal 0 then the expression is executed. After
that the Expression is again calculated and the entire procedure will constantly be repeated until the
Expression takes on the value 0.

Examples:

Do While a<10
 a=a+2
End While

Do While a
 a=a*2
 x=a
End While

Exit Instruction

If an Exit instruction is executed within a loop than the loop will be left and the program execution
starts with the next instruction after the While loop.

Example:

Do While 1 ' Endless loop
 a=a+1
 If a>10 Then

134 C-Control Pro Mega Series

© 2011 Conrad Electronic

 Exit ' Will terminate loop
 End If
End While

5.3.6.3 For Next

A For Next loop is normally used to program a definite number of loop runs.

For Counter Variable=Startvalue To Endvalue Step Stepwidth
 Instructions
Next

The Counter Variable is set to a Start Value. Then the instructions are repeated until the End Value
is reached. With each loop run the value of the Counter Variable is increased by one step width
which may also be negative. The stating of the step width after the End Value is optional. If no Step
Width is stated it has the value 1.

 Since the For Next loop will be used to especially optimized the counter variable must be of the
Integer type.

Example:

For i=1 To 10
 If i>a Then
 a=i
 End If
 a=a-1
Next

For i=1 To 10 Step 3 'Increment i in steps of 3
 If i>3 Then
 a=i
 End If
 a=a-1
Next

 In this location please note again that arrays are in any case zero based. A For Next loop should
thus rather run from 0 through 9.

Exit Instruction

An Exit instruction will leave the loop and the program execution starts with the next instruction after
the For loop.

Example:

For i=1 To 10
 If i=6 Then

135Compiler

© 2011 Conrad Electronic

 Exit
 End If
Next

5.3.6.4 Goto

Even though it should be avoided within structured programming languages, it is still possible with
goto to jump to a label within a procedure. In order to mark a label the command word Lab is set in
front of the label name.

' For loop with goto will realize

Sub main()
 Dim a As Integer

 a=0
Lab label1
 a=a+1
 If a<10 Then
 Goto label1
 End If
End Sub

5.3.6.5 If .. Else

An If instruction does have the following syntax:

If Expression1 Then
 Instructions1
ElseIf Expression2 Then
 Instructions2
Else
 Instructions3
End If

After the if instruction an Arithmetic Expression will follow. If this Expression is evaluated as unequal
 0 then Instruction1 will be executed. By use of the command word else an alternative Instruction2
can be defined which will be executed when the Expression has been calculated as 0. The addition
of an else instruction is optional and not really necessary.

If directly in an Else branch an If instruction needs again to be placed then it is possible to initialize
an If again direcly by use of an ElseIf. Thus the new If does not need to be interlocked into an Else
block and the source text remains more clearly.

Examples:

If a=2 Then
 b=b+1
End If

136 C-Control Pro Mega Series

© 2011 Conrad Electronic

If x=y Then
 a=a+2
Else
 a=a-2
End If

If a<5 Then
 a=a-2
ElseIf a<10 Then
 a=a-1
Else
 a=a+1
End If

5.3.6.6 Select Case

If depending on the value of an expression various commands should be executed then a Select
Case instruction seems to be an elegant solution:

Select Case Expression
 Case constant_comparison1
 Instructions_1
 Case constant_comparison2
 Instructions_2
 .
 .
 Case constant_comparison_x
 Instructions_x
 Else ' Else is optional
 Instructions
End Case

The value of the Expression is calculated. Then the program execution will jump to the first constant
comparison that can be evaluated as true and will continue the program from there. If no constant
comparison can be fulfilled the Select Case construct will be left.

For constant comparisons special comparisons and ranges can be defined . Here examples for all
possibilities:

Comparison Execute on

 Constant, = Constant Expression equal Constant

< Constant Expression smaller Constant

<= Constant Expression smaller equal Constant

> Constant Expression greater Constant

>= Constant Expression greater equal Constant

<> Constant Expression unequal Constant

Constant1 To Constant2 Constant1 <= Expression <= Constant2

137Compiler

© 2011 Conrad Electronic

 The new features that allow to use comparisons are introduced for Select Case statements with
IDE version 1.71. This extension is not available for CompactC switch statements.

 The execution of a Select Case statement is highly optimized. All values are stored inside a
jumptable. Therefore exists a constraint that the calculated Expression is of type signed 16 Bit
Integer (-32768 .. 32767). For this reason a e.g. "Case > 32767" is rather senseless.

Exit Instruction

An Exit will leave the Select Case instruction.

If an Else is defined within a Select Case instruction then the instructions after Else will be
executed if no constant comparison could be fulfilled.

Example:

Select Case a+2
 Case 1
 b=b*2
 Case = 5*5
 b=b+2
 Case 100 And &Hf
 b=b/c
 Case < 10
 b=10
 Case <= 10
 b=11
 Case 20 To 30
 b=12
 Case > 100
 b=13
 Case >= 100
 b=14
 Case <> 25
 b=15
 Else
 b=b+2
End Case

 In CompactC the instructions will be continued after a Case instruction until a break comes up
or the switch instruction is left. With BASIC this is different: Here the execution of the commands
will break off after a Case, if the next Case instruction is reached.

5.3.7 Functions

In order to structure a larger program it is separated into several sub-functions.
This not only improves the readability but allows to combine all program
instructions repeatedly appearing in functions. A program does in any case
contain the function "main", which is started in first place. After that other
functions can be called up from main. A simple example:

138 C-Control Pro Mega Series

© 2011 Conrad Electronic

Sub func1()

 ' Instructions in function func1
 .
 .
End Sub

Sub main()

 ' Function func1 will be called up twice
 func1()
 func1()
End Sub

Parameter Passing

In order to enable functions to be flexibly used they can be set up parametric. To do this the
parameters for the function are separated by commas and passed in parenthesis after the function
name. Similar to the variables declaration first the parameter name and then the data type is stated.
If no parameter is passed then the parenthesis will stay empty.
An example:

Sub func1(param1 As Word, param2 As Single)
 Msg_WriteHex(param1) ' first parameter output
 Msg_WriteFloat(param2) ' second parameter output
End Sub

 Similar to local variables passed parameters are only visible within the function itself.

In order to call up function func1 by use of the parameters the parameters for call up should be
written in the same succession as they have been defined in func1. If the function does not get
parameters the parenthesis will stay empty.

Sub main()
 Dim a As Word
 Dim f As Single

 func1(128,12.0) ' you can pass Numerical constants
 a=100
 f=12.0

 func1(a+28,f) ' or yet variables too and even numerical expressions
End Sub

 When calling up a function all parameters must always be stated. The following call up is
inadmissible:

func1() ' func1 gets 2 parameters!
func1(128) ' func1 gets 2 parameters!

139Compiler

© 2011 Conrad Electronic

Return Parameters

It is not only possible to pass parameters. A function can also offer a return value. The data type of
this value is during function definition entered after the parameter list of the function.

Sub func1(a As Integer) As Integer
 Return a-10
End Sub

The return value is within the function stated as instruction "return Expression". If there is a function
without return value then the return instruction can be used without parameters in order to leave the
function.

References

Since it is not possible to pass on arrays as parameters the access to parameters is possible
through references. For this the attribute "ByRef" is written ahead of the parameter name in the
parameter declaration of a function.

Sub StringLength(ByRef str As Char) As Integer
 Dim i As Integer

 i=0
 Do While str(i)

 i=i+1 ' Repeat character as long as unequal zero

 End While
 Return i
End Sub

Sub main()
 Dim Len As Integer
 Dim Text(15) As Char

 Text="hello world"
 Len=StringLength(Text)
End Sub

In main the reference of text is presented as parameters to the function StringLength. If in a function
a normal parameter is changed then the change is not visible outside this function. With references
this is different. Through parameter str can in StringLength the contents of text be changed since str
is only the reference (pointer) to the array variable text.

 Presently arrays can only be presented "by Reference"!

Pointer Arithmetic

In the current C-Control Pro software also arithmetic on a reference (pointer) is permitted, as the
following example shows. The arithmetic is limited to addition, subtraction, multiplication and
division.

140 C-Control Pro Mega Series

© 2011 Conrad Electronic

Sub main()
 Dim Len As Integer
 Dim Text(15) As Char

 Text="hello world"
 Len=StringLength(Text+2*3)
End Sub

 Pointer arithmetic is currently experimental and may possibly still contain errors.

Strings as Parameter

Since Version 2.0 of the IDE it is possible to call functions with a string as parameter. The called
function gets the string as reference. Since references are RAM based and predefined strings are
stored in the flash memory, the compiler creates internally an anonymous variable, and copies the
data from flash into memory.

Sub StringLength(ByRef str As Char) As Integer
....
End Sub

Sub main()
 Dim Len As Integer

 Len=StringLength("hallo welt")
End Sub

5.3.8 Tables

5.3.8.1 Operator Precedence

Rang Operator

10 ()

9 - (negatives Vorzeichen)

8 * /

7 Mod

6 + -

5 << >>

4 = <> < <= > >=

3 Not

2 And

1 Or Xor

141Compiler

© 2011 Conrad Electronic

5.3.8.2 Operators

 Arithmetische Operatoren

+ Addition

- Subtraktion

* Multiplikation

/ Division

Mod Modulo

- negatives Vorzeichen

 Vergleichsoperatoren

< kleiner

> größer

<= kleiner gleich

>= größer gleich

= gleich

<> ungleich

 Bitschiebeoperatoren

<< um ein Bit nach links schieben

>> um ein Bit nach rechts schieben

 Bitoperatoren

And Und

Or Oder

Xor exclusives Oder

Not Bitinvertierung

5.3.8.3 Reserved Words

The following words are reserved and cannot be used as identifiers:

 And As ByRef Byte Case
 Char Dim Do Else ElseIf
 End Exit False For Goto
 If Integer Lab Loop Mod
 Next Not Opc Or Return
 Select Single SizeOf Static Step
 Sub Then To True While
 Word Xor ULong Long UInteger

142 C-Control Pro Mega Series

© 2011 Conrad Electronic

5.4 Assembler

With IDE Version 2.0 it is possible to integrate Assembler routines into a project. The used
Assembler is the GNU Open Source Assembler AVRA. The sources of the AVRA Assembler can be
found in the installation directory "GNU". Assembler routines that are called from CompactC and
Basic run in full CPU speed, in contrary to the Bytecode Interpreter. It is possible to pass paraneters
to Assembler procedures and get their return values. Also global CompactC and Basic variables can
be accessed. The compiler recognizes assembler files with their ".asm" ending. Assembler sources
are added to a project like CompactC or Basic files.

 The programming in assembly language is only recommended for the advanced user of the
system. The programming is very complex and error prone, and should only be used by these
people that have a very good knowledge of the system.

Literature

You can find manifold literature about assembly language programming on the internet and in the
book trade. Important are the "AVR Instruction Reference Manual" that can be found on the Atmel
website and in the "Manual" directory of the C-Control Pro installation, and the "AVR Assembler
User Guide" from the Atmel website.

5.4.1 An Example

The structure of assembly routines is explained in the following example (also included in the demo
programs). In the project the CompactC source code file must have the ending ".cc", the assembler
sourcefiles have to end with ".asm".

// CompactC Source
void proc1 $asm("tag1")(void);
int proc2 $asm("tag2")(int a, float b, byte c);

int glob1;
void main(void)
{
 int a;

 proc1();
 a= proc2(11, 2.71, 33);
}

The procedures proc1 and proc2 must first be declared, before they can be called. This happens with
the keyword $asm. The declaration in Basic looks similar:

' Basic delaration of assembler routines
$Asm("tag1") proc1()
$Asm("tag2") proc2(a As Integer, b As Single, c As Byte) As Integer

143Compiler

© 2011 Conrad Electronic

The strings "tag1" and "tag" are visible in the declaration. These strings are defined in a ".def" file, if
the Assembler routines are really called from the CompactC and Basic source. In this case the ".
def" file looks like:´

; .def file
.equ glob1 = 2
.define tag1 1
.define tag2 1

When all the routines in the Assembler sources are placed in ".ifdef ..." directions, only the routines
are assembled that are really called. This saves space at the code generation. Additionally the
position of the global variables are stored in the definition file. The ".def" file is automatically included
in the translation of the assembler files, it needed not to be manually included.

Here follows the assembler source of procedure proc1. In this source the global variable glob1 is set
to the value 42.

; Assembler Source
.ifdef tag1
proc1:

 ; global variable access example

 ; write 42 to global variable glob1

 MOVW R26,R8 ; get RamTop from register 8,9

 SUBI R26,LOW(glob1) ; subtract index from glob1 to get address
 SBCI R27,HIGH(glob1)

 LDI R30,LOW(42)
 ST X+,R30

 CLR R30 ; the high byte is zero
 ST X,R30

 ret
.endif

In the second part of the assembler sources the passed parameters "a" and "c" are added as
integers, and then the sum is returned.

144 C-Control Pro Mega Series

© 2011 Conrad Electronic

.ifdef tag2
proc2:
 ; example for accessing and returning parameter
 ; we have int proc2(int a, float b, byte c);
 ; return a + c

 MOVW R30, R10 ; move parameter stack pointer into Z
 LDD R24, Z+5 ; load parameter "a" into R24,25
 LDD R25, Z+6

 LDD R26, Z+0 ; load byte parameter "c" into X (R26)
 CLR R27 ; hi byte zero because parameter is byte

 ADD R24, R26 ; add X to R24,25
 ADC R25, R27

 MOVW R30, R6 ; copy stack pointer from R6
 ADIW R30, 4 ; add 4 to sp - ADIW only works for R24 and greater
 MOVW R6, R30 ; copy back to stack pointer location

 ST Z+, R24 ; store R24,25 on stack
 ST Z, R25

 ret
.endif

5.4.2 Data Access

Global Variables

In the Bytecode Interpreter in the register R8 and R9 lies the 16-Bit pointer to the end of the global
variable memory. If a global variable that is defined in the ".def" file should be accessed, the address
of the variable can be calculated when the variable position is subtracted from the R8, R9 16-Bit
pointer. This looks like:

 ; global variable access example

 ; write 0042 to global variable glob1

 MOVW R26,R8 ; get Ram Top from register 8,9

 SUBI R26,LOW(glob1) ; subtract index from glob1 to get address
 SBCI R27,HIGH(glob1)

When the address of the global variable is in the X register pair (R26,R27), the desired value (in our
example 42) can be written there:

 LDI R30,LOW(42)
 ST X+,R30

 CLR R30 ; the high byte of 42 is zero
 ST X,R30

145Compiler

© 2011 Conrad Electronic

Parameter Passing

Parameters are passed on the stack of the Bytecode Interpreter. The stackpointer (SP) lies in the
register pair R10,R11. Are parameters passed, they are written one after another onto the stack.
Since the stack grows to the bottom, in our example (integer a, floating point b, byte c) the memory
layout looks like this:

SP+5: a (type integer, length 2)
SP+1: b (type float, length 4)
SP+0: c (type byte, length 1)

If the variables a and c should be accessed, a will be found at SP+5 and c at SP. In the following
Assembler code the stack pointer SP (R10,R11) will be copied in the register pair Z (R30,R31), and
the parameters a and c are loaded indirect via Z.

 ; example for accessing and returning parameter

 ; we have int proc2(int a, float b, byte c);
 MOVW R30, R10 ; move parameter stack pointer into Z
 LDD R24, Z+5 ; load parameter "a" into R24,25
 LDD R25, Z+6

 LDD R26, Z+0 ; load byte parameter "c" into X (R26)
 CLR R27 ; hi byte zero because parameter is byte

The parameter a and c are now in the register pairs X and R24,25. Now they can be added:

 ADD R24, R26 ; add X to R24,25
 ADC R25, R27

Return Parameters

In the routine proc2 the sum is returned. Return parameters are written on the Parameter Stack
(PSP) of the Bytecode Interpreter. The pointer to the PSP lies in the register pair R6,R7. To return a
parameter the PSP pointer must be increased by 4 before the parameter can be written. In opposite
to the normal parameter passing the type of the return parameter is not important. All parameter on
the Parameter Stack have the same length of 4 bytes.

 ; return a + c
 MOVW R30, R6 ; copy stack pointer from R6
 ADIW R30, 4 ; add 4 to sp - ADIW only works for R24 and greater
 MOVW R6, R30 ; copy back to stack pointer location

 ST Z+, R24 ; store R24,25 on stack
 ST Z, R25

146 C-Control Pro Mega Series

© 2011 Conrad Electronic

5.4.3 Guideline

The most important topics on how to program in Assembler for C-Control Pro are explained here:

Assembler calls are atomic. An Assembler call cannot be interrupted by Multithreading or an
Bytecode Interruptroutine. This is similar to Library calls. An interrupt is recorded immediately by
the internal interrupt structure, but the corresponding Bytecode interrupt routine is called after the
assembler procedure has been ended.

Do not change the Y Register (R28 and R29), it is used from the interpreter as a data stack
pointer. This register is not restored in interrupt routines.

The register R0, R1, R22, R23, R24, R25, R26, R27, R30, R31 can be used in Assembler routines
without backup. If other register are used, the contents must be saved first. Normally these values
are stored on the stack. E.g.

 at begin: PUSH R5
 PUSH R6
 ...
 at end: POP R6
 POP R5

An Assembler routine is left with a "RET" instruction. At this point the CPU stack must be in the
same state as before the call. The contents of the register that need to be backuped must be
restored.

Debugging only works in the Bytecode Interpreter, it is not possible to debug in Assembler.

The Bytecode Interpreter has a fixed memory layout. In no case use Assembler directives like .
byte, .db, .dw, .dseg or similar. In an access to the data segment this would cause the
Assembler to overwrite memory that is used by the Bytecode Interpreter. If global variables are
needed, they should be declared in CompactC and Basic, and then can be accessed like
described in the chapter Data Access.

Do not set the address of an Assembler routine with .org. The IDE generates itself a .org directive
when starting the AVRA Assembler.

5.5 ASCII Table

ASCII Table

CHA
R

DEC HEX BIN Description

NUL 000 000 00000000 Null Character

SOH 001 001 00000001 Start of Header

STX 002 002 00000010 Start of Text

ETX 003 003 00000011 End of Text

147Compiler

© 2011 Conrad Electronic

EOT 004 004 00000100 End of Transmission

ENQ 005 005 00000101 Enquiry

ACK 006 006 00000110 Acknowledgment

BEL 007 007 00000111 Bell

BS 008 008 00001000 Backspace

HAT 009 009 00001001 Horizontal TAB

LF 010 00A 00001010 Line Feed

VT 011 00B 00001011 Vertical TAB

FF 012 00C 00001100 Form Feed

CR 013 00D 00001101 Carriage Return

SO 014 00E 00001110 Shift Out

SI 015 00F 00001111 Shift In

DLE 016 010 00010000 Data Link Escape

DC1 017 011 00010001 Device Control 1

DC2 018 012 00010010 Device Control 2

DC3 019 013 00010011 Device Control 3

DC4 020 014 00010100 Device Control 4

NAK 021 015 00010101 Negative Acknowledgment

SYN 022 016 00010110 Synchronous Idle

ETB 023 017 00010111 End of Transmission Block

CAN 024 018 00011000 Cancel

EM 025 019 00011001 End of Medium

SUB 026 01A 00011010 Substitute

ESC 027 01B 00011011 Escape

FS 028 01C 00011100 File Separator

GS 029 01D 00011101 Group Separator

RS 030 01E 00011110 Request to Send, Record Separator

US 031 01F 00011111 Unit Separator

SP 032 020 00100000 Space

! 033 021 00100001 Exclamation Mark

“ 034 022 00100010 Double Quote

148 C-Control Pro Mega Series

© 2011 Conrad Electronic

035 023 00100011 Number Sign

$ 036 024 00100100 Dollar Sign

% 037 025 00100101 Percent

& 038 026 00100110 Ampersand

‘ 039 027 00100111 Single Quote

(040 028 00101000 Left Opening Parenthesis

) 041 029 00101001 Right Closing Parenthesis

* 042 02A 00101010 Asterisk

+ 043 02B 00101011 Plus

, 044 02C 00101100 Comma

- 045 02D 00101101 Minus or Dash

. 046 02E 00101110 Dot

CHA
R

DEC HEX BIN Description

/ 047 02F 00101111 Forward Slash

0 048 030 00110000

1 049 031 00110001

2 050 032 00110010

3 051 033 00110011

4 052 034 00110100

5 053 035 00110101

6 054 036 00110110

7 055 037 00110111

8 056 038 00111000

9 057 039 00111001

: 058 03A 00111010 Colon

; 059 03B 00111011 Semi-Colon

< 060 03C 00111100 Less Than

= 061 03D 00111101 Equal

> 062 03E 00111110 Greater Than

149Compiler

© 2011 Conrad Electronic

? 063 03F 00111111 Question Mark

@ 064 040 01000000 AT Symbol

A 065 041 01000001

B 066 042 01000010

C 067 043 01000011

D 068 044 01000100

E 069 045 01000101

F 070 046 01000110

G 071 047 01000111

H 072 048 01001000

I 073 049 01001001

J 074 04A 01001010

K 075 04B 01001011

L 076 04C 01001100

M 077 04D 01001101

N 078 04E 01001110

O 079 04F 01001111

P 080 050 01010000

Q 081 051 01010001

R 082 052 01010010

S 083 053 01010011

T 084 054 01010100

U 085 055 01010101

V 086 056 01010110

W 087 057 01010111

X 088 058 01011000

Y 089 059 01011001

Z 090 05A 01011010

[091 05B 01011011 Left Opening Bracket

\ 092 05C 01011100 Back Slash

] 093 05D 01011101 Right Closing Bracket

150 C-Control Pro Mega Series

© 2011 Conrad Electronic

^ 094 05E 01011110 Caret

CHA
R

DEC HEX BIN Description

_ 095 05F 01011111 Underscore

` 096 060 01100000

a 097 061 01100001

b 098 062 01100010

c 099 063 01100011

d 100 064 01100100

e 101 065 01100101

f 102 066 01100110

g 103 067 01100111

h 104 068 01101000

i 105 069 01101001

j 106 06A 01101010

k 107 06B 01101011

l 108 06C 01101100

m 109 06D 01101101

n 110 06E 01101110

o 111 06F 01101111

p 112 070 01110000

q 113 071 01110001

r 114 072 01110010

s 115 073 01110011

t 116 074 01110100

u 117 075 01110101

v 118 076 01110110

w 119 077 01110111

x 120 078 01111000

y 121 079 01111001

151Compiler

© 2011 Conrad Electronic

z 122 07A 01111010

{ 123 07B 01111011 Left Opening Brace

| 124 07C 01111100 Vertical Bar

} 125 07D 01111101 Right Closing Brace

~ 126 07E 01111110 Tilde

DEL 127 07F 01111111 Delete

Part

6

153Libraries

© 2011 Conrad Electronic

Libraries6

In this part of the documentation all attached Help functions are described which allow the user to
comfortably gain access to the hardware. At the beginning of each function the syntax for CompactC
and BASIC is shown. After that the description of functions and involved parameters will follow.

6.1 Internal Functions

To allow the Compiler to recognise the internal functions present in the Interpreter these functions
must be defined in library "IntFunc_Lib.cc". If this library is not tied in no outputs can be performed
by the program. The following would e. g. be a typical entry in "IntFunc_Lib.cc":

void Msg_WriteHex$Opc(0x23)(Word val);

This definition states that the function ("Msg_WriteHex") in the Interpreter is called up by a jump
vector of 0x23 and a word has to be transferred to the stack as a parameter.

 Changes in the library "IntFunc_Lib.cc" may cause that the functions declared there can no
longer be executed correctly.

6.2 General

In this chapter all single functions are collected that cannot be categorized to other chapters in the
library.

6.2.1 AbsDelay

General Functions

Syntax

void AbsDelay(word ms);

Sub AbsDelay(ms As Word);

Description

The function Absdelay() waits for a specified number of milliseconds.

 This function works in a very accurate manner, but suspends the bytecode interpreter. A thread change
will not happen during this time. Interrupts are recognized, but will not be processed since the interpreter
is necessary for this operations.

 Please use Thread_Delay instead of AbsDelay if you work with threads. If you call an AbsDelay(1000)
in an endless loop nevertheless, the following will happen: Since the thread is changing after 5000 cycles
(default value) to the next thread, the next thread will begin after after about 5000 * 1000ms. This happens
because an AbsDelay() call will be treated like on cycle.

154 C-Control Pro Mega Series

© 2011 Conrad Electronic

Parameter

ms wait duration in milliseconds

6.2.2 Sleep

General Functions

Syntax

void Sleep(byte ctrl);

Sub Sleep(ctrl As Byte)

Description

Using this function the Atmel CPU is set in one of the 6 different sleep modes. The exact functionality is
provided in the Atmel Mega Reference Manual in the chapter "Power Management and Sleep Modes". The
value of ctrl is written into the bits SM0 and SM2. The sleep enable bit (SE in MCUCR) is set and a
 assembler sleep instruction is executed.

Parameter

ctrl Initialization (SM0 to SM2)

Sleep Modes

 SM2 SM1 SM0 Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby
1 1 1 Extended Standby

6.3 Analog-Comparator

The Analog Comparator allows to compare two analog signals. The result of this comparison is returned
as either "0" or "1".

6.3.1 AComp

AComp Functions Example

Syntax

155Libraries

© 2011 Conrad Electronic

void AComp(byte mode);

Sub AComp(mode As Byte);

Description

The Analog Comparator allows to compare two analog signals. The result of this comparison is returned
as either "0" or "1". (Comparator Output). The negative input is Mega32: AIN1 (PortB.3), Mega128: AIN1
(PortE.3). The positive input can either be Mega32: AIN0 (PortB.2), Mega128: AIN0 (PortE.2) , or an internal
reference voltage of 1,22V.

Parameter

mode working mode

Mode Values:

0x00 external inputs (+)AIN0 and (-)AIN1 are used

0x40 external Input (-)AIN1and internal reference voltage are used

0x80 Analog-Comparator gets disabled

6.3.2 AComp Example

Example: Usage of Analog-Comparators

// AComp: Analog Comparator

// Mega32: Input (+) PB2 (PortB.2) bzw. band gap reference 1,22V

// Input (-) PB3 (PortB.3)

// Mega128: Input (+) PE2 (PortE.2) bzw. band gap reference 1,22V

// Input (-) PE3 (PortE.3)

// used Library: IntFunc_Lib.cc

// The function AComp returns the value of the comparator.

// If the voltage on input PB2/PE2 is greater than the input PB3/PE3 the

// function AComp returns the value 1.

// Mode:

// 0x00 external inputs (+)AIN0 and (-)AIN1 are used

// 0x40 external input (-)AIN1 and the internal reference voltage are used

// 0x80 the Analog-Comparator is disabled

// In this example you can call AComp with parameter 0 (both inputs are used)

// or with 0x40 (internal reference voltage on (+) input, external Input PB3/PE3)

//--

// main program

//
void main(void)
{
 while (true)

156 C-Control Pro Mega Series

© 2011 Conrad Electronic

 {

 if (AComp(0x40)==1) // Input (+) band gap reference 1,22V
 {

 Msg_WriteChar('1'); // Output: 1
 }
 else
 {

 Msg_WriteChar('0'); // Output: 0
 }

 // the comparator value is read all 500ms
 AbsDelay(500);
 }
}

6.4 Analog-Digital-Converter

The Micro Controller has an Analog Digital Converter with a resolution of 10 Bit. I. e. measured
voltages can be displayed as integral numbers from 0 through 1023. Reference voltage for the lower
limit is GND level (0V). The reference voltage for the upper limit can be selected at will.

External Reference Voltage
AVCC with capacitor on AREF
Internal Reference Voltage 2.56V with capacitor on AREF

Analog Inputs ADC0 ... ADC7, ADC_BG, ADC_GND

For the ADC the Inputs ADC0 ... ADC7 (Port A.0 to A.7 with Mega32, Port F.0 to F.7 with
Mega128), an internal Band Gap (1.22V) or GND (0V) are available. ADC_BG and ADC_GND can
be used for review of the ADC.

If x is a digital measuring value then the corresponding voltage value u is calculated as follows:

u = x * Reference Voltage / 1024

If the external reference voltage e. g. produced by a reference voltage IC is 4.096V, then the
difference of one bit of the digitized measuring value corresponds to a voltage difference of 4mV, or:

u = x * 0,004V

 The result of an A/D conversion can be influenced, if any Port Bit (configured for output) on the same
Port as the A/D channel, is changed during the measurement.

157Libraries

© 2011 Conrad Electronic

Differential Inputs

ADC22x10 Differential Inputs ADC2, ADC2, Gain 10 ; Offset Measurement
ADC23x10 Differential Inputs ADC2, ADC3, Gain 10
ADC22x200 Differential Inputs ADC2, ADC2, Gain 200 ; Offset Measurement
ADC23x200 Differential Inputs ADC2, ADC3, Gain 200
ADC20x1 Differential Inputs ADC2, ADC0, Gain 1
ADC21x1 Differential Inputs ADC2, ADC1, Gain 1
ADC22x1 Differential Inputs ADC2, ADC2, Gain 1 ; Offset Measurement
ADC23x1 Differential Inputs ADC2, ADC3, Gain 1
ADC24x1 Differential Inputs ADC2, ADC4, Gain 1
ADC25x1 Differential Inputs ADC2, ADC5, Gain 1

ADC2 is the negative input.

The ADC can also perform differential measurements. The result can either be positive or negative.
The resolution during differential operation amounts to +/- 9 bit and is displayed in Two's
Complement format. For differential operation an amplifier with gains of V: x1, x10, x200 is available.
If x is a digital measuring value then the corresponding voltage value u is calculated as follows:

u = x * Reference Voltage / 512 / V

6.4.1 ADC_Disable

ADC Functions

Syntax

void ADC_Disable(void);

Sub ADC_Disable()

Description

This function disables to the A/D-Converter to reduce power consumption.

Parameter

None

6.4.2 ADC_Read

ADC Functions

Syntax

word ADC_Read(void);

Sub ADC_Read() As Word

158 C-Control Pro Mega Series

© 2011 Conrad Electronic

Description

The function ADC_Read delivers the digitized measured value from one of the 8 ADC ports. The port
number (0..7) has been given as a parameter in the call of ADC_Set(). The result is in the range from 0 to
1023 according to the 10bit resolution of the A/D-Converter. The analog inputs ADC0 to ADC7 can be
measured against ground, or differentiation measurement with gain factor of 1/10/100 can be made.

Return Parameter

measured value at the ADC-Port

6.4.3 ADC_ReadInt

ADC Functions

Syntax

word ADC_ReadInt(void);

Sub ADC_ReadInt() As Word

Description

This function is used to read the measurement value after a successful ADC-Interrupt. The ADC-Interrupt
gets triggered after the AD conversion is completed and a new measurement value is available. See
ADC_SetInt and ADC_StartInt. The function ADC_Read delivers the digitized measured value from one of
the 8 ADC ports. The port number (0..7) has been given as a parameter in the call of ADC_Set(). The
result is in the range from 0 to 1023 according to the 10bit resolution of the A/D-Converter. The analog
inputs ADC0 to ADC7 can be measured against ground, or differentiation measurement with gain factor of
1/10/100 can be made.

Return Parameter

measured value of ADC-Port

6.4.4 ADC_Set

ADC Functions

Syntax

word ADC_Set(byte v_ref,byte channel);

Sub ADC_Set(v_ref As Byte,channel As Byte) As Word

Description

The function ADC_Set initializes the Analog-Digital converter. The reference voltage and the measurement
channel number is selected and the A/D converter is prepared for usage. After the measurement the value
is read with ADC_Read().

159Libraries

© 2011 Conrad Electronic

 The result of an A/D conversion can be influenced, if any Port Bit (configured for output) on the same
Port as the A/D channel, is changed during the measurement.

Parameter

channel port number (0..7)of ADC (Port A.0 to A.7 at Mega32, Port F.0 to F.7 at Mega128)
v_ref reference voltage (see table)

Name Value Description

ADC_VREF_BG 0xC0 2,56V internal reference voltage

ADC_VREF_VCC 0x40 supply voltage (5V)

ADC_VREF_EXT 0x00 external reference voltage on PAD3

For the location of PAD3 see Jumper Application Board M32 or M128.

6.4.5 ADC_SetInt

ADC Functions

Syntax

word ADC_SetInt(byte v_ref,byte channel);

Sub ADC_SetInt(v_ref As Byte,channel As Byte) As Word

Description

The function ADC_SetInt initializes the Analog-Digital converter for interrupt usage. The reference voltage
and the measurement channel number is selected and the A/D converter is prepared for the
measurement. An interrupt service routine must be defined. After successful interrupt the value can be
read with ADC_ReadInt().

 The result of an A/D conversion can be influenced, if any Port Bit (configured for output) on the same
Port as the A/D channel, is changed during the measurement.

Parameter

channel port number (0..7)of ADC (Port A.0 to A.7 at Mega32, Port F.0 to F.7 at Mega128)
v_ref reference voltage (see table)

Name Value Description

ADC_VREF_BG 0xC0 2,56V internal reference voltage

ADC_VREF_VCC 0x40 supply voltage (5V)

ADC_VREF_EXT 0x00 external reference voltage on PAD3

For the location of PAD3 see Jumper Application Board M32 or M128.

160 C-Control Pro Mega Series

© 2011 Conrad Electronic

6.4.6 ADC_StartInt

ADC Functions

Syntax

void ADC_StartInt(void);

Sub ADC_StartInt()

Description

The measurement is started if the A/D converter has previously been initialized to interrupt service with a
call to ADC_SetInt(). After the measurement is ready, the interrupt gets triggered.

Parameter

None

6.5 CAN Bus

The CAN bus (Controller Area Network Data Sheet) is an asynchronous serial bus system and
belongs to the field buses. It is internationally standardized in ISO 11898 and defines the Layer 1
(physical layer) and 2 (data security layer).

The CAN-bus was developed in 1983 from Bosch. Originally, the CAN-Bus was developed for the
automotive sector, because with increasing vehicle electronics the wiring harnesses got larger, and a
solution for weight and cost reduction had to be found. This successful and very safe approach is not
only used today in the automotive industry, but also in the areas of automation, aviation, aerospace
and medical technology.

The CAN signals of the C-Control Pro MEGA128CAN are available on pins X4_13 (CANL) and X4_14
(CANH) . Multiple CAN-bus network participants (eg several MEGA128CAN units) can be connected
over the two pins. The first and last stations have to be completed with a 120 Ohm resistor. As a
data cable, a twisted pair cable should be used. For shorter distances of a few centimeters up to 2
meters, even a simple parallel cable (twin lead) can be used.

The MEGA128CAN supports the low- and high-speed bus (10 kbit/s to 1 Mbit/s). For theoretical line
lengths, depending on the bus speed, see the chart below.

161Libraries

© 2011 Conrad Electronic

Speed Cable Length

1 Mbit/s 40m

Up to 500 kbit/s 100m

Up to 125 kbit/s 500m

Less than 125 kbit/s Up to 1000m

The line lengths are highly dependent on the used cables and the number of participants. It is
possible to use a "twist-pair cables with a characteristic impedance 108-132 Ohm. A maximum of
32 MEGA128CAN units can operate on a bus. It is best to start at the theoretical maximum speed
for the used cable length, and to lower the transfer rate when there is no packet transfer at all or
there occur too many packet errors.

The MEGA128CAN supports the "Base frame format" CAN 2.0A (11 bit identifier) and the extended
frame format "CAN 2.0B (29 bit identifier).

To use the CAN bus in your own projects together with the C-Control Pro Mega128 CAN, it is
essential to understand the CAN data format and the technical details of the CAN bus. Background
information can be found in books and in Wikipedia: http://de.wikipedia.org/wiki/
Controller_Area_Network

Message Objects

The active CAN bus controller in the C-Control Pro 128 CAN (AT90CAN128) works with 15
independent message objects (MOb) with which one can send and receive messages with certain
identifiers. For this purpose the message objects are parameterized with CAN_SetMOb() for the
related task.

 Message Objects with a low MOb number have always precedence before a MOb with a higher
number. When two MOb's are capable to receive a certain message, the message will be received
from the MOb with the lower number.

CAN Protocol

The CAN bus controller can simultaneously process normal packets (CAN 2.0A) and extended
packets (CAN 2.0B). CAN bus identifier are passed as 32-bit dword (ULong). Depending on the type
of packets an identifier is 11-bit (V2.0 part A) or 29-bit long (V2.0 part B). The unused bits are
ignored. The maskID determines which packages are received for a specific identifier (ID). Only the
bits in the maskID that are "1" are to be reviewed at a bit comparison between the set identifier and
the ID of the incoming packet.

automatic reply

If a Message Object is set to automatic reply, the MOb inherits the Data Length Code (DLC) of the
incoming remote trigger package. I.e. the sender of the trigger packet determines with the DLC the
number of data bytes that are sent in the reply packet.

http://de.wikipedia.org/wiki/Controller_Area_Network
http://de.wikipedia.org/wiki/Controller_Area_Network

162 C-Control Pro Mega Series

© 2011 Conrad Electronic

Message FIFO

During the initialization of the CAN library the user provides RAM for the message FIFO, in which all
incoming CAN packets are stored. The received messages can then be read asynchronously from
the FIFO.

6.5.1 CAN Examples

In this chapter some initialization examples are given to clarify the operation of the CAN Library.

Initialization

In any event, the CAN library must be initialized before use. This example is for the CAN bus at a
speed of 1 mega bps, and for a FIFO RAM with 10 entries.

byte fifo_buf[140];

CAN_Init(CAN_1MBPS, 10, fifo_buf);

Reception

1. On MOb 2 messages of type CAN 2.0A are received, that have exactly an identifier of 0x123.

CAN_SetMOb(2, 0x123, 0x7ff, CAN_RECV);

2. On MOb 3 messages of type CAN 2.0B are received, that have exactly an identifier of 0x12345.

CAN_SetMOb(3, 0x12345, 0x1fffffff, CAN_RECV|CAN_EXTID);

3. On MOb 3 messages of type CAN2.0A and CAN 2.0B are received, because the
CAN_IGN_EXTID flag is set. Because the maskID is null messages with all identifiers are received.
Since CAN_IGN_RTR is set, normal and trigger packets are accepted.

CAN_SetMOb(3, 0x12345, 0, CAN_RECV|CAN_IGN_EXTID|CAN_IGN_RTR);

4. On MOb 2 messages of type CAN 2.0A are received, that have an identifier of 0x120, 0x121,
0x122 or 0x123.

CAN_SetMOb(2, 0x120, 0x7fc, CAN_RECV);

Send

1. On MOb 0 is sent a CAN 2.0A message with ID 0x432 and 6 data byte.

byte data[8], i;

163Libraries

© 2011 Conrad Electronic

for(i=0;i<8;i++) data[i]=i;
CAN_SetMOb(0, 0x432, 0, CAN_SEND);
CAN_MObSend(0, 6, data);

2. On MOb 1 a CAN 2.0B message will be sent with ID 0x12345678 and 8 data.

byte data[8], i;

for(i=0;i<8;i++) data[i]=i;
CAN_SetMOb(1, 0x12345678, 0, CAN_SEND|CAN_EXTID);
CAN_MObSend(1, 8, data);

Automatic Reply

MOb 4 is set to automatic reply. The data bytes provided with CAN_SetMOb () are sent when a
CAN 2.0B trigger message is received with ID of 0x999. The number of transmitted data bytes
depends on the DLC incoming trigger message.

byte data[5], i;

for(i=0;i<5;i++) data[i]=i;
CAN_SetMOb(4, 0x999, 0x1fffffff, CAN_REPL|CAN_EXTID);
CAN_MObSend(4, 5, data);

6.5.2 CAN_Exit

CAN Bus Functions

Syntax

void CAN_Exit(void);

Sub CAN_Exit()

Description

The CAN chip functions are turned off.

6.5.3 CAN_GetInfo

CAN Bus Functions

Syntax

byte CAN_GetInfo(byte infotype);

164 C-Control Pro Mega Series

© 2011 Conrad Electronic

Sub CAN_GetInfo(infotype As Byte) As Byte

Description

Returns information about the number of received CAN messages and CAN transmission errors.

Parameter

infotype selected CAN Bus information

Return Parameter

CAN Library information

infotype parameter:

Value Definition Meaning

1 CAN_MSGS Number of already received CAN messages in the FIFO

2 CAN_ERR_RECV Number of CAN receive errors (max. 255)

3 CAN_ERR_TRAN Number of CAN send errors (max. 255)

6.5.4 CAN_Init

CAN Bus Functions

Syntax

void CAN_Init(byte speed, byte fifo_len, byte fifo_addr[]);

Sub CAN_Init(speed As Byte, fifo_len As Byte, fifo_addr As Byte[]);

Description

Initializes the CAN functions. During initialization the user provides a RAM buffer for the reception of CAN
messages. Inside this buffer a total of fifo_len messages can be stored. The RAM area must have the size
fifo_len * 14 bytes. If the FIFO is full, incoming CAN messages are not stored.

 The user-provided RAM buffer must remain reserved during the use of the CAN interface. Since local
variables will be released after leaving the function, it usually makes sense to declare the buffer as a
global variable.

Parameter

speed CAN Bus transmission speed
fifo_len Number of entries in the receive FIFO
fifo_addr RAM address of the reception buffer

165Libraries

© 2011 Conrad Electronic

speed parameter:

Value Definition CAN Baudrate

0 CAN_10KBPS 10.000bps
1 CAN_20KBPS 20.000bps
2 CAN_40KBPS 40.000bps
3 CAN_100KBPS 100.000bps
4 CAN_125KBPS 125.000bps
5 CAN_200KBPS 200.000bps
6 CAN_250KBPS 250.000bps
7 CAN_500KBPS 500.000bps
8 CAN_800KBPS 800.000bps
9 CAN_1MBPS 1.000.000bps

6.5.5 CAN_Receive

CAN Bus Functions

Syntax

byte CAN_Receive(byte data[]);

Sub CAN_Receive(ByRef data[] As Byte) As Byte

Description

If messages are in the receive FIFO, the 14-byte data is copied in the user array, which must have a length
of 14 bytes. Is bit 31 of the IDT is set in the received message, then RTR was set in the CAN packet.

Parameter

data Array in which the CAN message is copied

Return Parameter

Length of CAN Packetdata (0-8 Byte)

Structure of the data set

Byte 0: MOb Number (0-14)
Byte 1-4: 29-Bit IDT (at V2.0 part A Msgs the upper bits are null)
Byte 5: Length of CAN Data (0-8)
Byte 6-13: Packetdata

166 C-Control Pro Mega Series

© 2011 Conrad Electronic

6.5.6 CAN_MObSend

CAN Bus Functions

Syntax

void CAN_MObSend(byte mob, byte len, byte data[]);

Sub CAN_MObSend(mob As Byte, len As Byte, ByRef data[] As Byte);

Description

A CAN message is sent over the bus. If, however, the CAN_REPL flag was set at CAN_SetMOb (), the data
for the automatic reply will be saved and not sent immediately.

Parameter

mob MOb Number (0-14)
len Length of the data to send
data Array in der

6.5.7 CAN_SetMOb

CAN Bus Functions

Syntax

void CAN_SetMOb(byte mob, dword ID, dword maskID, byte flag);

Sub CAN_SetMOb(mob As Byte, ID As ULong, maskID As ULong, flag As Byte);

Description

Mit dieser Funktion werden die Parameter für eine Message Object (MOb) gesetzt. Der Identifier und die
Identifier Maske werden als dword (ULong) übergeben. Bei einem 11-Bit Identifier werden die oberen Bits
ignoriert. Die maskID wird only beim Empfang genutzt. Nur wenn ein Bit in der maskID gesetzt ist, wird
beim Nachrichtenempfang an der gleichen Bitposition im Identifier geprüft, ob der empfangene Identifier
übereinstimmt.

Parameter

mob MOb Number(0-14)
ID Identifier
maskID Identifier Mask
flag Operationparameter for the Message Object (MOb)

flag Parameter:

Value Definition Description

167Libraries

© 2011 Conrad Electronic

0x01 CAN_RECV Nachrichtenempfang auf diesem MOb
0x02 CAN_RTR Das Remote Trigger Bit wird gesetzt
0x04 CAN_EXTID Die CAN Nachricht hat eine 29-Bit ID (V2.0 part B)
0x08 CAN_REPL Automatic Reply wird initiiert
0x10 CAN_IGN_RTR In der ID Maske wird RTR nicht gesetzt
0x20 CAN_IGN_EXTID In der ID Maske wird IDEMSK nicht gesetzt
0x40 CAN_SEND Auf diesem MOb soll gesendet werden

6.6 Clock

The internal software clock is clocked by the 10ms interrupt of Timer2. Time and date can be set and then
continue to run independently. Leap years are taken into account. Depending on the Quartz inaccuracy the

error is between 4-6 seconds per day. A correction factor in 10ms ticks can be applied, that is added every
hour to the internal counter.

Example: If you have a deviation of 9.5 sec for 2 days, then you have to correct a deviation of 9.5 / (2 * 24) =
0.197 sec. This corresponds to a correction factor of 20, if the software clock goes in advance, or -20 else.

 When Timer 2 off, or used for other purposes, the internal software clock is not functional.

6.6.1 Clock_GetVal

Clock Functions

Syntax

byte Clock_GetVal(byte indx);

Sub Clock_GetVal(indx As Byte) As Byte

Description

All Date and Time values of the internal software clock can be read.

 The values of day and month are zero based, a one should be added when printing.

Parameter

indx index of date or time parameter

 #define Index Meaning
 CLOCK_SEC 0 Second
 CLOCK_MIN 1 Minute
 CLOCK_HOUR 2 Hour
 CLOCK_DAY 3 Day
 CLOCK_MON 4 Month
 CLOCK_YEAR 5 Year

168 C-Control Pro Mega Series

© 2011 Conrad Electronic

Return Parameter

requested time parameter

6.6.2 Clock_SetDate

Clock Functions

Syntax

void Clock_SetDate(byte day, byte mon, byte year);

Sub Clock_SetDate(day As Byte, mon As Byte, year As Byte)

Description

Sets the date of the internal software clock.

 The values of day and month are zero based.

Parameter

day Day
mon Month
year Year

6.6.3 Clock_SetTime

Clock Functions

Syntax

void Clock_SetTime(byte hour, byte min, byte sec, char corr);

Sub Clock_SetTime(hour As Byte, min As Byte, sec As Byte, corr As Char)

Description

Sets the time of the internal software clock. For a description of the correction factor refer to chapter Clock.

Parameter

hour Hour
min Minute
sec Second
corr Correction Factor

169Libraries

© 2011 Conrad Electronic

6.7 DCF 77

All DCF routines are realized in library "LCD_Lib.cc". For use of this function the library "DCF_Lib.
cc" has to be tied into the project.

RTC with DCF 77 Time Synchronization

The DCF 77 Time Signal

The logical informations (time informations) are transmitted in addition to the normal frequency
(carrier frequency of the transmitter, i. e. 77.5 kHz). This is performed by negative modulation of the
signal (decrease of carrier amplitude to 25%). The start of the decrease lies at the respective
beginning of the seconds 0 … 58 within a minute. In second 59 there is no decrease, so the
following second mark can indicate the beginning of a minute and the receiver can be synchronized.
The sign duration yields the logical value of the signs: 100 ms are "0", 200 ms are "1". Because of
this there are 59 bits for informations available within one minute. From these the second marks 1
through 14 are used for operation informations which are not meant for DCF 77 users. The second
marks 15 through 19 indicate the transmitter antenna, the time zone and will give notice of coming
time changes.

From second 20 through 58 the time information for the respective following minute will be
transmitted serially in from of BCD numbers, whereby in any case the least significant bit will be the
start bit.

Bits Meaning

20 Start bit (in any case "1")

21 - 27 Minute

28 Parity Minute

29 - 34 Hour

35 Parity Hour

36 - 41 Day of the Month

42 - 44 Weekday

45 - 49 Month

50 - 57 Year

58 Parity Date

This signifies that reception must be in progress for at least one full minute before time information
can be provided. The information decoded during this minute is only secured by three parity bits. So
two incorrectly received bits will already lead to a transmission error that can not be recognised in
this way. For higher demands additional checking mechanisms can be used, such as plausibility
check (is the received time within the admissible limits) or multiple reading of the DCF 77 time
information with data comparison. Another possibility would be to compare the DCF time with the
current RTC time and only allow a specific deviation. This method does not work right after program
start since the RTC has to be set first.

Description of the example program "DCF_RTC.cc"

170 C-Control Pro Mega Series

© 2011 Conrad Electronic

The program DCF_RTC.cc represents a clock which is synchronized by use of DCF 77. Time and
date are displayed on an LCD. Synchronization takes place after program start and then daily at a
time determined in the program (Update_Hour, Update_Minute). There are two libraries used:
DCF_Lib.cc and LCD_Lib.cc.
For the radio reception of the time signal a DCF 77 receiver is necessary. The output of the DCF
receiver is connected to the input port (Mega32: PortD.7 - M128: PortF.0). At first the beginning of a
time information has to be found. It will be synchronized onto the pulse gap (bit 59). Following the bit
will be received in seconds time. There will be a parity check after the minute and hour information
and also at the end of the transmission. The result of the parity check will be stored in DCF_ARRAY
[6]. For transfer of the time information DCF_ARRAY[0..6] will be used. After reception of a valid time
information the RTC will be set with this new time and will then run independently. RTC as well as
DCF 77 decoding is controlled by a 10ms interrupt. This time base is derived from the quartz
frequency of the Controller. DCF_Mode will control the completion of the DCF 77 time reception.

Table DCF Modes

DCF_Mode Description

0 No DCF 77 operation

1 Find pulse

2 Synchronization on frame start

3 Decode and store data. Parity check

RTC (Real Time Clock)

The RTC is controlled by a 10ms interrupt and runs in the background independent of the user
program. The display on the LCD is updated every second. The display format is in the first line:
Hour : Minute : Second, in the second line: Date of Day : Month : Year.

LED1 flashes once per second.
After program start the RTC begins with the set time. The date is set to zero and thus indicates that
no DCF time adjustment has yet taken place. After reception of the DCF time the RTC is updated
with the current data. The RTC is not backed up by a battery, i. e. the clock time will not be updated
if there is no power applied to the Controller.

6.7.1 DCF_FRAME

DCF Functions

Syntax

void DCF_FRAME(void);

Sub DCF_FRAME()

171Libraries

© 2011 Conrad Electronic

Description

Set DCF_Mode to 3 ("data decode and save, parity check").

Parameter

None

6.7.2 DCF_INIT

DCF Functions

Syntax

void DCF_INIT(void);

Sub DCF_INIT()

Description

DCF_INIT initializes DCF usage. The input of the DCF signal is adjusted. DCF_Mode is set to 0.

Parameter

None

6.7.3 DCF_PULS

DCF Functions

Syntax

void DCF_PULS(void);

Sub DCF_PULS()

Description

Set DCF_Mode to 1 ("look for pulse").

Parameter

None

172 C-Control Pro Mega Series

© 2011 Conrad Electronic

6.7.4 DCF_START

DCF Functions

Syntax

void DCF_START(void);

Sub DCF_START()

Description

DCF_START initializes all variables and sets DCF_Mode to 1. From now on DCF time recording is
working automatically.

Parameter

None

6.7.5 DCF_SYNC

DCF Functions

Syntax

void DCF_SYNC(void);

Sub DCF_SYNC()

Description

Set DCF_Mode to 2 ("synchronize for frame beginning").

Parameter

None

6.8 Debug

The Debug Message Functions allow to send formatted text to the output window of the IDE. These
functions are interrupt driven with a buffer of up to 128 Byte. I. e. 128 Byte can be transferred through
the debug interface without the Mega 32 or Mega 128 Module having to wait for completion of the
output. The transmission of the individual characters takes place in the background. If it is tried to
send more than 128 Byte then the Mega RISC CPU will have to wait until all characters not fitting

173Libraries

© 2011 Conrad Electronic

into the buffer anymore have been transferred.

6.8.1 Msg_WriteChar

Debug Message Functions

Syntax

void Msg_WriteChar(char c);

Sub Msg_WriteChar(c As Char);

Description

One character is written to the output window. A C/R (Carriage Return - Value:13) generates a jump to the
next line (linefeed).

Parameter

c output character

6.8.2 Msg_WriteFloat

Debug Message Functions

Syntax

void Msg_WriteFloat(float val);

Sub Msg_WriteFloat(val As Single)

Description

The passed floating point number is displayed with a preceding decimal sign.

Parameter

val float value

6.8.3 Msg_WriteHex

Debug Message Functions

Syntax

void Msg_WriteHex(word val);

Sub Msg_WriteHex(val As Word)

174 C-Control Pro Mega Series

© 2011 Conrad Electronic

Description

The 16bit value is displayed in the output window. The Output is formatted as a hexadecimal value with 4
digits. Leading zeros are displayed.

Parameter

val 16bit integer value

6.8.4 Msg_WriteInt

Debug Message Functions

Syntax

void Msg_WriteInt(int val);

Sub Msg_WriteInt(val As Integer)

Description

The passed 16bit value is display in the output window. Negative values are displayed with a preceding
minus sign.

Parameter

val 16bit integer value

6.8.5 Msg_WriteText

Debug Message Functions

Syntax

void Msg_WriteText(char text[]);

Sub Msg_WriteText(ByRef text As Char)

Description

All characters of a character array up to the terminating null are sent to the output window.

Parameter

text pointer to char array

175Libraries

© 2011 Conrad Electronic

6.8.6 Msg_WriteWord

Debug Message Functions

Syntax

void Msg_WriteWord(word val);

Sub Msg_WriteWord(val As Word)

Description

The parameter val is written to the output windows as an unsigned decimal number.

Parameter

val 16bit unsigned integer value

6.9 Direct Access

The Direct Access functions allow direct access to all registers of the Atmel processor. The Register
numbers of the Atmel MEGA32 and Mega128 processors can be found in the Reference manual in
the chapter "Register Summary".

 Caution! A careless reading or writing access to a register can strongly affect the functionality
of all library functions. Only someone who knows what he does, should use the Direct Access
functions!

6.9.1 DirAcc_Read

Direct Access Functions

Syntax

byte DirAcc_Read(byte register);

Sub DirAcc_Read(register As Byte) As Byte

Description

A Byte is read from a Register of the Atmel CPU.

Parameter

register Register number (refer to chapter "Register Summary" in the Atmel Reference Manual)

Return Parameter

176 C-Control Pro Mega Series

© 2011 Conrad Electronic

Value of Register

6.9.2 DirAcc_Write

Direct Access Functions

Syntax

void DirAcc_Write(byte register, byte val);

Sub DirAcc_Write(register As Byte, val As Byte)

Description

A Byte value is written into a Register of the Atmel CPU.

Parameter

register Register number (refer to chapter "Register Summary" in the Atmel Reference Manual)
val Byte value

6.10 EEPROM

The C-Control Pro Modules integrate M32:1kB resp. M128:4kB EEPROM. These library functions
allow access to the EEPROM of the Interpreter. 32 Bytes of the EEPROM area are used for internal
tasks and are thus not accessible.

6.10.1 EEPROM_Read

EEPROM Functions

Syntax

byte EEPROM_Read(word pos);

Sub EEPROM_Read(pos As Word) As Byte

Description

Reads one byte out of the EEPROM at position pos. The first 32 byte are reserved for the OS of C-Control
Pro. Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and upwards.

Parameter

pos byte position in EEPROM

Return Parameter

177Libraries

© 2011 Conrad Electronic

EEPROM value

6.10.2 EEPROM_ReadWord

EEPROM Functions

Syntax

word EEPROM_ReadWord(word pos);

Sub EEPROM_ReadWord(pos As Word) As Word

Description

Reads one word out of the EEPROM at position pos. The first 32 byte are reserved for the OS of C-Control
Pro. Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and upwards.
The value of pos describes a byte position in the EEPROM. This should be taken care of when using word
or floating point accesses.

Parameter

pos byte position in EEPROM

Return Parameter

EEPROM value

6.10.3 EEPROM_ReadFloat

EEPROM Functions

Syntax

float EEPROM_ReadFloat(word pos);

Sub EEPROM_ReadFloat(pos As Word) As Single

Description

Reads a floating point value out of the EEPROM at position pos. The first 32 byte are reserved for the OS of
C-Control Pro. Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and
upwards. The value of pos describes a byte position in the EEPROM. This should be taken care of when
using word or floating point accesses.

Parameter

pos byte position in EEPROM

178 C-Control Pro Mega Series

© 2011 Conrad Electronic

Return Parameter

EEPROM value

6.10.4 EEPROM_Write

EEPROM Functions

Syntax

void EEPROM_Write(word pos,byte val);

Sub EEPROM_Write(pos As Word,val As Byte)

Description

Writes one byte into the EEPROM at position pos. The first 32 byte are reserved for the OS of C-Control Pro.
Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and upwards.

Parameter

pos byte position in EEPROM
val new EEPROM value

6.10.5 EEPROM_WriteWord

EEPROM Functions

Syntax

void EEPROM_WriteWord(word pos,word val);

Sub EEPROM_WriteWord(pos As Word,val As Word)

Description

Writes one word into the EEPROM at position pos. The first 32 byte are reserved for the OS of C-Control
Pro. Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and upwards.
The value of pos describes a byte position in the EEPROM. This should be taken care of when using word
or floating point accesses.

Parameter
pos byte position in EEPROM
val new EEPROM value

179Libraries

© 2011 Conrad Electronic

6.10.6 EEPROM_WriteFloat

EEPROM Functions

Syntax

void EEPROM_WriteFloat(word pos,float val);

Sub EEPROM_WriteFloat(pos As Word,val As Single)

Description

Writes a floating point value into the EEPROM at position pos. The first 32 byte are reserved for the OS of
C-Control Pro. Therefore a pos value of 0 and higher accesses the EEPROM memory at position 32 and
upwards. The value of pos describes a byte position in the EEPROM. This should be taken care of when
using word or floating point accesses.

Parameter

pos byte position in EEPROM
val new EEPROM value

6.11 I2C

The Controller provides an I2C Logic which allows effective communication. The Controller
operates as an I2C Master (single master system). A slave operating mode is possible
but not yet implemented in the current version.

6.11.1 I2C_Init

I2C Functions Example

Syntax

void I2C_Init(byte I2C_BR);

Sub I2C_Init(I2C_BR As Byte)

Description

This function initializes the I2C interface.

Parameter

I2C_BR describes the baud rate. The following values are predefined:

I2C_100kHz

I2C_400kHz

180 C-Control Pro Mega Series

© 2011 Conrad Electronic

6.11.2 I2C_Read_ACK

I2C Functions

Syntax

byte I2C_Read_ACK(void);

Sub I2C_Read_ACK() As Byte

Description

This function receives a byte and acknowledges with ACK. Afterwards the status of the interface can be
returned with I2C_Status().

Return Parameter

value read from the I2C bus

6.11.3 I2C_Read_NACK

I2C Functions Example

Syntax

byte I2C_Read_NACK(void);

Sub I2C_Read_NACK() As Byte

Description

This function receives a byte and acknowledges with NACK. Afterwards the status of the interface can be
returned with I2C_Status().

Return Parameter

value read from the I2C bus

6.11.4 I2C_Start

I2C Functions Example

Syntax

void I2C_Start(void);

Sub I2C_Start()

181Libraries

© 2011 Conrad Electronic

Description

This function introduces communication with a starting sequence. Afterwards the status of the interface
can be returned with I2C_Status().

Parameter

None

6.11.5 I2C_Status

I2C Functions

Syntax

byte I2C_Status(void);

Sub I2C_Status()

Description

With I2C_Status the status of the I2C interface can be accessed. For the meaning of the return value
please look inside the I2C status code table.

Return Parameter

current I2C Status

6.11.6 I2C_Stop

I2C Functions Example

Syntax

void I2C_Stop(void);

Sub I2C_Stop()

Description

This function ceases the I2C communication with a stop sequence. Afterwards the status of the interface
can be returned with I2C_Status().

Parameter

None

182 C-Control Pro Mega Series

© 2011 Conrad Electronic

6.11.7 I2C_Write

I2C Functions Example

Syntax

void I2C_Write(byte data);

Sub I2C_Write(data As Byte)

Description

I2C_Write() sends a byte to the I2C bus. Afterwards the status of the interface can be returned with
I2C_Status().

Parameter

data data byte

6.11.8 I2C Status Table

Table: Status Codes Master Transmitter Mode

Status Code Description

0x08 a START sequence has been sent

0x10 a "repeated" START sequence has been sent

0x18 SLA+W has been sent, ACK has been received

0x20 SLA+W has been sent, NACK has been received

0x28 Data byte has been sent, ACK has been received

0x30 Data byte has been sent, NACK has been received

0x38 conflict with SLA+W or data bytes

Table: Status Codes Master Receiver Mode

Status Code Description

0x08 a START sequence has been sent
0x10 a "repeated" START sequence has been sent
0x38 conflict with SLA+R or data bytes

183Libraries

© 2011 Conrad Electronic

0x40 SLA+R has been sent, ACK has been received
0x48 SLA+R has been sent, NACK has been received
0x50 Data byte has been sent, ACK has been received
0x58 Data byte has been sent, NACK has been received

6.11.9 I2C Example

Example: read EEPROM 24C64 and write without I2C_Status check

// I2C Initialization, Bit Rate 100kHz

main(void)
{
 word address;
 byte data,EEPROM_data;

 address=0x20;
 data=0x42;

 I2C_Init(I2C_100kHz);

 // write data to 24C64 (8k x 8) EEPROM
 I2C_Start();

 I2C_Write(0xA0); // DEVICE ADDRESS : A0

 I2C_Write(address>>8); // HIGH WORD ADDRESS

 I2C_Write(address); // LOW WORD ADDRESS

 I2C_Write(data); // write Data
 I2C_Stop();

 AbsDelay(5); // delay for EEPROM Write Cycle

 // read data from 24C64 (8k x 8) EEPROM
 I2C_Start();

 I2C_Write(0xA0); // DEVICE ADDRESS : A0

 I2C_Write(address>>8); // HIGH WORD ADDRESS

 I2C_Write(address); // LOW WORD ADDRESS

 I2C_Start(); // RESTART

 I2C_Write(0xA1); // DEVICE ADDRESS : A1
 EEPROM_data=I2C_Read_NACK();
 I2C_Stop();
 Msg_WriteHex(EEPROM_data);
}

6.12 Interrupt

The Controller provides a multitude of interrupts. Some of them are used for system functions and
are thus not available to the user. The following interrupts can be utilized by the user.

Table: Interrupts

184 C-Control Pro Mega Series

© 2011 Conrad Electronic

Interrupt Name Description

 INT_0 external Interrupt0

 INT_1 external Interrupt1

 INT_2 external Interrupt2

 INT_3 external Interrupt3 (only Mega128)

 INT_4 external Interrupt4 (only Mega128)

 INT_5 external Interrupt5 (only Mega128)

 INT_6 external Interrupt6 (only Mega128)

 INT_7 external Interrupt7 (only Mega128)

 INT_TIM1CAPT Timer1 Capture

 INT_TIM1CMPA Timer1 CompareA

 INT_TIM1CMPB Timer1 CompareB

 INT_TIM1OVF Timer1 Overflow

 INT_TIM0COMP Timer0 Compare

 INT_TIM0OVF Timer0 Overflow

 INT_ANA_COMP Analog Comparator

 INT_ADC ADC

 INT_TIM2COMP Timer2 Compare

 INT_TIM2OVF Timer2 Overflow

 INT_TIM3CAPT Timer3 Capture (only Mega128)

 INT_TIM3CMPA Timer3 CompareA (only Mega128)

 INT_TIM3CMPB Timer3 CompareB (only Mega128)

 INT_TIM3CMPC Timer3 CompareC (only Mega128)

 INT_TIM3OVF Timer3 Overflow (only Mega128)

The corresponding interrupt has to receive the corresponding instructions in an Interrupt Service
Routine (ISR) and also the interrupt has to be enabled. See Example. During execution of the interrupt
routine the Multi Threading is suspended.

 A signal on INT_0 can interfere with the Autostart Behaviour when the C-Control Pro Module is
switched on. According to the pin assignment of M32 and M128 INT_0 shares the same pin with
SW1. If SW1 is pressed during power up of the Module then the Bootloader Mode will be activated
and the program will not be automatically started.

6.12.1 Ext_IntEnable

Interrupt Functions

Syntax

void Ext_IntEnable(byte IRQ,byte Mode);

Sub Ext_IntEnable(IRQ As Byte,Mode As Byte)

Description

185Libraries

© 2011 Conrad Electronic

This function enables the external Interrupt IRQ. The Mode parameter defines when to trigger the interrupt.
Caution: A signal on INT_0 at power up time can lead to Autostart problems.

 The IRQ parameter is defined between 0 and 2 for the Mega32 and between 0 and 7 for the Mega128.
Please do not mistake with the irqnr parameter of Irq_SetVect().

 The IRQ2 of Mega32 can only work edge triggered. See the different Mode parameter.

Parameter

IRQ number of the interrupt to be enabled
Mode parameter:

0: a low level triggers the interrupt
1: every changing edge triggers the interrupt
2: a falling edge triggers the interrupt
3: a rising edge triggers the interrupt

Mode parameter for Mega32 and IRQ2:

0: a falling edge triggers the interrupt
1: a rising edge triggers the interrupt

6.12.2 Ext_IntDisable

Interrupt Functions

Syntax

void Ext_IntDisable(byte IRQ);

Sub Ext_IntDisable(IRQ As Byte)

Description

The external Interrupt IRQ gets disabled.

Parameter

IRQ number of the interrupt to disable

6.12.3 Irq_GetCount

Interrupt Functions Example

Syntax

byte Irq_GetCount(byte irqnr);

Sub Irq_GetCount(irqnr As Byte) As Byte

186 C-Control Pro Mega Series

© 2011 Conrad Electronic

Description

 Acknowledges the interrupt. If the function is not called at the end of a interrupt service routine, the
interrupt service routine gets called continuously.

Parameter

irqnr specifies the interrupt type (see table)

Return Parameter

The return value expresses how often a interrupt got triggered until the function Irq_GetCount() has been
called. A value greater 1 shows that the interrupts
are triggered more rapidly than the interrupt service routine is processed.

6.12.4 Irq_SetVect

Interrupt Functions Example

Syntax

void Irq_SetVect(byte irqnr,dword vect);

Sub Irq_SetVect(irqnr As Byte,vect As ULong)

Description

Defines an interrupt service routine for a specified interrupt. At the end of the interrupt service routine the
function Irq_GetCount() has to be called, otherwise the interrupt service routine gets called continuously. A
vect of value Null sets the interrupt inactive again.

Parameter

irqnr specifies the interrupt type (see table)

vect is the name of the interrupt function to be called

6.12.5 IRQ Example

Example: Usage of Interrupt Routines

// normally Timer 2 is called every 10ms. In this example the variable

// cnt gets increased by one every 10ms

int cnt;

void ISR(void)

187Libraries

© 2011 Conrad Electronic

{
 int irqcnt;

 cnt=cnt+1;
 irqcnt=Irq_GetCount(INT_TIM2COMP);
}

void main(void)
{
 cnt=0;

 Irq_SetVect(INT_TIM2COMP,ISR);

 while(true); // endless loop
}

6.13 Keyboard

One part of these keyboard routines is implemented in the Interpreter, another can be called up after
appending library "LCD_Lib.cc". Since the functions in
 "LCD_Lib.cc" are realized through Bytecode they are slower when executed. Library functions
however have the advantage that they can be taken from the project by omitting the library in case
they are not needed. Direct Interpreter functions are always present, will however take up flash
memory.

6.13.1 Key_Init

Keyboard Functions (Library "Key_Lib.cc")

Syntax

void Key_Init(void);

Sub Key_Init()

Description

The global keymap array gets initialized with the ASCII values of the keyboard.

Parameter

None

6.13.2 Key_Scan

Keyboard Functions

Syntax

word Key_Scan(void);

188 C-Control Pro Mega Series

© 2011 Conrad Electronic

Sub Key_Scan() As Word

Description

Key_Scan scans sequentially the input pins of the connected keyboard and returns the result as a bit field
with 16 bits. Bits that are set represent keys that have been pressed during the scan.

Return Parameter

16 bits that represent the input lines of the keyboard

6.13.3 Key_TranslateKey

Keyboard Functions (Library "Key_Lib.cc")

Syntax

char Key_TranslateKey(word keys);

Sub Key_TranslateKey(keys As Word) As Char

Description

This help function looks for the first "1" in the bit field, and returns the
ASCII value of the corresponding key.

Parameter

keys bit field value that has been retuned from Key_Scan()

Return Parameter

ASCII value of recognized keys
-1 if no key is pressed

6.14 LCD

A part of these routines is implemented in the Interpreter, another part can be called up by
appending library "LCD_Lib.cc". Since the functions in "LCD_Lib.cc" are realized through Bytecode
they are slower when executed. Library functions however have the advantage that they can be taken
from the project by omitting the library in case they are not needed. Direct Interpreter functions are
always present, will however take up flash memory.

6.14.1 LCD_ClearLCD

LCD Functions (Library "LCD_Lib.cc")

Syntax

189Libraries

© 2011 Conrad Electronic

void LCD_ClearLCD(void);

Sub LCD_ClearLCD()

Description

Clears the display and enables the Cursor.

Parameter

None

6.14.2 LCD_CursorOff

LCD Functions (Library "LCD_Lib.cc")

Syntax

void LCD_CursorOff(void);

Sub LCD_CursorOff()

Description

Turns the cursor off on the display.

Parameter

None

6.14.3 LCD_CursorOn

LCD Functions (Library "LCD_Lib.cc")

Syntax

void LCD_CursorOn(void);

Sub LCD_CursorOn()

Description

Turns the cursor in the display on.

Parameter

None

190 C-Control Pro Mega Series

© 2011 Conrad Electronic

6.14.4 LCD_CursorPos

LCD Functions (Library "LCD_Lib.cc")

Syntax

void LCD_CursorPos(byte pos);

Sub LCD_CursorPos(pos As Byte)

Description

Moves the cursor to position pos.

Parameter

pos cursorposition

Value of pos Position on Display

0x00-0x07 0-7 on 1st line

0x40-0x47 0-7 on 2nd line

The following table is valid for displays with more than 2 lines and up to 32 chars per line:

Value of pos Position on Display

0x00-0x1f 0-31 on line 1

0x40-0x5f 0-31 on line 2

0x20-0x3f 0-31 on line 3

0x60-0x6f 0-31 on line 4

6.14.5 LCD_Init

LCD Functions (Library "LCD_Lib.cc")

Syntax

void LCD_Init(void);

Sub LCD_Init()

Description

191Libraries

© 2011 Conrad Electronic

High level intialization of the LCD display. Calls LCD_InitDisplay() as first.

Parameter

None

6.14.6 LCD_Locate

LCD Functions

Syntax

void LCD_Locate(int row, int column);

Sub LCD_Locate(row As Integer, column As Integer)

Description

Sets the cursor of the LCD display to given row and column.

Parameter

row
column

6.14.7 LCD_SubInit

LCD Functions

Syntax

void LCD_SubInit(void);

Sub LCD_SubInit()

Description

Initializes the display ports on assembler level. Must be called before all other LCD output functions. This
function will be used as first command from LCD_Init().

Parameter

None

192 C-Control Pro Mega Series

© 2011 Conrad Electronic

6.14.8 LCD_TestBusy

LCD Functions

Syntax

void LCD_TestBusy(void);

Sub LCD_TestBusy()

Description

This function waits for a non-busy of the display controller. If the controller is accessed in his busy period
the output data will be corrupted.

Parameter

None

6.14.9 LCD_WriteChar

LCD Functions (Library "LCD_Lib.cc")

Syntax

void LCD_WriteChar(char c);

Sub LCD_WriteChar(c As Char)

Description

Displays one character at the cursor position on the LCD display.

Parameter

c ASCII value of output character

6.14.10 LCD_WriteCTRRegister

LCD Functions (Library "LCD_Lib.cc")

Syntax

void LCD_WriteCTRRegister(byte cmd);

Sub LCD_WriteCTRRegister(cmd As Byte)

Description

193Libraries

© 2011 Conrad Electronic

Sends a command to the display controller.

Parameter

cmd byte command

6.14.11 LCD_WriteDataRegister

LCD Functions (Library "LCD_Lib.cc")

Syntax

void LCD_WriteDataRegister(char x);

Sub LCD_WriteDataRegister(x As Char)

Description

Sends a data byte to the display controller.

Parameter

x data byte

6.14.12 LCD_WriteFloat

LCD Functions

Syntax

void LCD_WriteFloat(float value, byte length);

Sub LCD_WriteFloat(value As Single, length As Byte)

Description

Writes a floating point value with given length to LCD display.

Parameter

value floating point value
length output length

194 C-Control Pro Mega Series

© 2011 Conrad Electronic

6.14.13 LCD_WriteRegister

LCD Functions

Syntax

void LCD_WriteRegister(byte y,byte x);

Sub LCD_WriteRegister(y As Byte,x As Byte)

Description

LCD_WriteRegister divides the data byte y in 2 nibbles (4bit values) and
sends the nibbles to the display controller.

y data byte
x command nibble

6.14.14 LCD_WriteText

LCD Functions (Library "LCD_Lib.cc")

Syntax

void LCD_WriteText(char text[]);

Sub LCD_WriteText(ByRef Text As Char)

Description

All characters of the char array up to the terminating zero are displayed.

Parameter

text char array

6.14.15 LCD_WriteWord

LCD Functions

Syntax

void LCD_WriteWord(word value, byte length);

Sub LCD_WriteWord(value As Word, length As Byte)

Description

195Libraries

© 2011 Conrad Electronic

Writes an unsigned integer (word) with given length to the LCD display. If the resulting LCD output is
smaller than the given length, the output filled with zeros "0" at the beginning.

Parameter

value word value
length output length

6.15 Math

Mathematical Functions.

6.15.1 Floating Point

In the following the mathematical functions are listed which the C-Control Pro 128 is able to master
with single floating point accuracy (32 bit). These functions are not contained in the C-Control Pro 32
since it would then not offer enough memory for user programs.

6.15.1.1 acos

Floating Point Functions

Syntax

float acos(float val);

Sub acos(val As Single) As Single

Description

The mathematical arc cosine (inverse cosine) is calculated.

Parameter

val input value between -1 and 1

Return Parameter

arc cosine of the input value in the range [0..Pi], expressed in radians

6.15.1.2 asin

Floating Point Functions

Syntax

float asin(float val);

196 C-Control Pro Mega Series

© 2011 Conrad Electronic

Sub asin(val As Single) As Single

Description

The mathematical arc sine (inverse sine) is calculated.

Parameter

val input value between -1 and 1

Return Parameter

arc sine of the input value in the range [-Pi/2..Pi/2], expressed in radians

6.15.1.3 atan

Floating Point Functions

Syntax

float atan(float val);

Sub atan(val As Single) As Single

Description

The mathematical arc tangent (inverse tangent) is calculated.

Parameter

val input value

Return Parameter

arc tangent of the input value in the range [-Pi/2..Pi/2], expressed in radians

6.15.1.4 ceil

Floating Point Functions

Syntax

float ceil(float val);

Sub ceil(val As Single) As Single

Description

The largest integer value of the floating point number x is calculated.

197Libraries

© 2011 Conrad Electronic

Parameter

val input value

Return Parameter

result

6.15.1.5 cos

Floating Point Functions

Syntax

float cos(float val);

Sub cos(val As Single) As Single

Description

The mathematical cosine is calculated.

Parameter

val input angle expressed in radians

Return Parameter

cosine of the input value between -1 and 1

6.15.1.6 exp

Floating Point Functions

Syntax

float exp(float val);

Sub exp(val As Single) As Single

Description

The exponential function e ̂val is calculated.

Parameter

val exponent

Return Parameter

198 C-Control Pro Mega Series

© 2011 Conrad Electronic

result

6.15.1.7 fabs

Floating Point Functions

Syntax

float fabs(float val);

Sub fabs(val As Single) As Single

Description

The absolute value of the floating point number val is calculated.

Parameter

val input value

Return Parameter

result

6.15.1.8 floor

Floating Point Functions

Syntax

float floor(float val);

Sub floor(val As Single) As Single

Description

The smallest integer value of the floating point number x is calculated.

Parameter

val input value

Return Parameter

result

199Libraries

© 2011 Conrad Electronic

6.15.1.9 ldexp

Floating Point Functions

Syntax

float ldexp(float val,int expn);

Sub ldexp(val As Single,expn As Integer) As Single

Description

The function val * 2 ^ expn is calculated (also used as internal help function for other mathematical
functions).

Parameter

val multiplier
expn exponent

Return Parameter

result

6.15.1.10 ln

Floating Point Functions

Syntax

float ln(float val);

Sub ln(val As Single) As Single

Description

The natural logarithm is calculated.

Parameter

val input value

Return Parameter

result

6.15.1.11 log

Floating Point Functions

Syntax

200 C-Control Pro Mega Series

© 2011 Conrad Electronic

float log(float val);

Sub log(val As Single) As Single

Description

The logarithm base 10 is calculated.

Parameter

val input value

Return Parameter

result

6.15.1.12 pow

Floating Point Functions

Syntax

float pow(float x,float y);

Sub pow(x As Single,y As Single) As Single

Description

The power function x ̂y is calculated.

Parameter

x base
y exponent

Return Parameter

result

6.15.1.13 round

Floating Point Functions

Syntax

float round(float val);

Sub round(val As Single) As Single

Description

201Libraries

© 2011 Conrad Electronic

Rounding function. The floating point value is rounded up or down to a number without decimal places.

Parameter

val input value

Return Parameter

result of the function

6.15.1.14 sin

Floating Point Functions

Syntax

float sin(float val);

Sub sin(val As Single) As Single

Description

The mathematical sine is calculated.

Parameter

val input angle expressed in radians

Return Parameter

sine of the input value between -1 and 1

6.15.1.15 sqrt

Floating Point Functions

Syntax

float sqrt(float val);

Sub sqrt(val As Single) As Single

Description

The square root of a positive floating point number is calculated.

Parameter

val input value

Return Parameter

202 C-Control Pro Mega Series

© 2011 Conrad Electronic

result

6.15.1.16 tan

Floating Point Functions

Syntax

float tan(float val);

Sub tan(val As Single) As Single

Description

The mathematical tangent is calculated.

Parameter

val input angle expressed in radians

Return Parameter

tangent of the input value

6.15.2 Integer

Mathematical Integer Functions.

6.15.2.1 rand

Integer Functions

Syntax

int rand(void);

Sub rand() As Integer

Description

This function returns a pseudo random number between 0 and 32768. Use srand() with different seeds for
varying sequences of numbers.

Return Parameter

Pseudo Random Number

203Libraries

© 2011 Conrad Electronic

6.15.2.2 srand

Integer Functions

Syntax

void srand(int seed);

Sub srand(seed As Integer)

Description

Sets the seed for the pseudo random number generator. With the same seed the pseudo random
number sequences can be reproduced.

Parameter

seed pseudo random number generator starting value.

6.16 OneWire

1-Wire or One-Wire is a serial interface that needs only one wire for signaling and power. The data is
transferred asynchronously (without clock signal) in groups of 64 bit. Data can either be sent or
received, but not at the same time (half-duplex).

The special about 1-Wire devices is the parasitically power supply, that is made over the signal wire:
When there is no communication, the signal wire has a +5V level and charges a capacitor. During
low-pulse communication the slave device is powered from his capacitor. Dependent on the charge
of the capacitor, low-time gaps up to 960 µs can be bridged.

6.16.1 Onewire_Read

1-Wire Functions

Syntax

byte Onewire_Read(void);

Sub Onewire_Read() As Byte

Description

A Byte is read from the One-Wire Bus.

Return Parameter

value read from One-Wire Bus

204 C-Control Pro Mega Series

© 2011 Conrad Electronic

6.16.2 Onewire_Reset

1-Wire Functions

Syntax

void Onewire_Reset(byte portbit);

Sub Onewire_Reset(portbit As Byte)

Description

A reset is made on the One-Wire Bus. The port bit number for the One-Wire Bus communication is
specified.

Parameter

portbit port bit number (see table)

Portbits Table

Definition Portbit

PortA.0 0
... ...

PortA.7 7
PortB.0 8

... ...

PortB.7 15

PortC.0 16

... ...

PortC.7 23

PortD.0 24

... ...

PortD.7 31

from here only Mega128
PortE.0 32

... ...

PortE.7 39

PortF.0 40

... ...

PortF.7 47

PortG.0 48

... ...

PortG.4 52

205Libraries

© 2011 Conrad Electronic

6.16.3 Onewire_Write

1-Wire Functions

Syntax

void Onewire_Write(byte data);

Sub Onewire_Write(data As Byte)

Description

A byte is written to the One-Wire Bus.

Parameter

data data byte

6.16.4 Onewire Example

CompactC

// Sample Code to read DS18S20 temperature sensor from Dallas Maxim
void main(void)
{
 char text[40];
 int ret, i;
 byte rom_code[8];
 byte scratch_pad[9];

 ret= OneWire_Reset(7); // PortA.7
 if(ret == 0)
 {
 text= "no device found";
 Msg_WriteText(text);
 goto end;
 }

 OneWire_Write(0xcc); // skip ROM cmd

 OneWire_Write(0x44); // start temperature measure cmd

 AbsDelay(3000);

 OneWire_Reset(7); // PortA.7

 OneWire_Write(0xcc); // skip ROM cmd

 OneWire_Write(0xbe); // read scratch_pad cmd

 for(i=0;i<9;i++) // read whole scratchpad
 {
 scratch_pad[i]= OneWire_Read();
 Msg_WriteHex(scratch_pad[i]);

206 C-Control Pro Mega Series

© 2011 Conrad Electronic

 }
 Msg_WriteChar('\r');

 text= "Temperature: ";
 Msg_WriteText(text);

 temp= scratch_pad[1]*256 + scratch_pad[0];
 Msg_WriteFloat(temp* 0.5);
 Msg_WriteChar('C');
 Msg_WriteChar('\r');

 end:
}

BASIC

' Sample Code to read DS18S20 temperature sensor from Dallas Maxim
Dim Text(40) As Char
Dim ret,i As Integer
Dim temp As Integer
Dim rom_code(8) As Byte
Dim scratch_pad(9) As Byte

Sub main()

 ret = OneWire_Reset(7) ' PortA.7

 If ret = 0 Then
 Text= "no device found"
 Msg_WriteText(Text)
 GoTo Ende
 End If

 OneWire_Write(0xcc) ' skip ROM cmd
 OneWire_Write(0x44) ' start temperature measure cmd

 AbsDelay(3000)

 OneWire_Reset(7) ' PortA.7
 OneWire_Write(0xcc) ' skip ROM cmd
 OneWire_Write(0xbe) ' read scratch_pad cmd

 For i = 0 To 9 ' read whole scratchpad
 scratch_pad(i)= OneWire_Read()
 Msg_WriteHex(scratch_pad(i))
 Next
 Msg_WriteChar(13)

 Text = "Temperature: "
 Msg_WriteText(Text)

 temp = scratch_pad(1) * 256 + scratch_pad(0)

207Libraries

© 2011 Conrad Electronic

 Msg_WriteFloat(temp * 0.5)
 Msg_WriteChar(99)
 Msg_WriteChar(13)

 Lab Ende
End Sub

6.17 Port

The Atmel Mega 32 provides 4 input/output ports at 8 bits each. The Atmel Mega 128 provides 6
input/output ports at 8 bits each and one input/output port at 5 bits. Each bit of the individual ports
can be configured as input or output. Since however the number of pins in the Mega 32 Risc CPU is
limited, additional functions are assigned to individual ports. A pin assignment table for M32 and
M128 can be found in the documentation.

 It is important to study the pin assignment prior to programming since important functions of the
program design (e. g. the USB Interface of the Application Board) are assigned to specific ports. If
these ports are programmed differently or the corresponding jumpers on the Application Board are no
longer set it may happen that the design interface is no longer able to transfer programs to the C-
Control Pro.

 The direction of data flow (input/output) can be determined with function Port_DataDir or
Port_DataDirBit. If a pin is configured as input then this pin can either be operated high resistive
("floating") or with an internal pull-up resistor. If with Port_Write or Port_WriteBit a "1" is written to an
input then the pull-up resistor (Reference Level VCC) is activated and the input is defined.

6.17.1 Port_DataDir

Port Functions Example

Syntax

void Port_DataDir(byte port,byte val);

Sub Port_DataDir(port As Byte,val As Byte)

Description

The function Port_DataDir configures the port for input or output direction. Is a bit set, then the Pin
corresponding to the bit position is switched to output. Example: Is port = PortB and val = 0x02, then

PortB.1 is configured for output, all other ports on PortB are set to input (see Pin Assignment of M32
and M128).

Parameter

port port number (see table)

208 C-Control Pro Mega Series

© 2011 Conrad Electronic

val output byte

port number table

Definition Value

PortA 0
PortB 1
PortC 2
PortD 3

PortE (Mega128) 4
PortF (Mega128) 5
PortG (Mega128) 6

6.17.2 Port_DataDirBit

Port Functions

Syntax

void Port_DataDirBit(byte portbit,byte val);

Sub Port_DataDirBit(portbit As Byte,val As Byte)

Description

The function Port_DataDirBit configures one bit (Pin) of a port for input or output direction. Is a bit set, then
the Pin corresponding to the bit position is switched to output. Example: Is portbit = 10 and val = 0, then

PortB.2 is configured for input. All other ports on PortB stay the same (see Pin Assignment of M32
and M128).

 Port Bit access is always significant slower than the normal Port access that transfers 8 Bit. If the
desired values of all Port Bits are known, 8-Bit Port access is always preferable.

Parameter

portbit port bit number (see table)
val 0=Input, 1= Output

Portbits Table

Definition Portbit

PortA.0 0
... ...

PortA.7 7

209Libraries

© 2011 Conrad Electronic

PortB.0 8

... ...

PortB.7 15

PortC.0 16

... ...

PortC.7 23

PortD.0 24

... ...

PortD.7 31

from here only Mega128
PortE.0 32

... ...

PortE.7 39

PortF.0 40

... ...

PortF.7 47

PortG.0 48

... ...

PortG.4 52

6.17.3 Port_Read

Port Functions

Syntax

byte Port_Read(byte port);

Sub Port_Read(port As Byte) As Byte

Description

Reads a byte from the specified port. Only the Pins of port that are configured for input return a valid value

on their bit position (see Pin Assignment of M32 and M128).

Parameter

port port number (see table)

Return Parameter

port byte value

port number table

Definition Value

PortA 0
PortB 1
PortC 2
PortD 3

210 C-Control Pro Mega Series

© 2011 Conrad Electronic

PortE (Mega128) 4
PortF (Mega128) 5
PortG (Mega128) 6

6.17.4 Port_ReadBit

Port Functions

Syntax

byte Port_ReadBit(byte port);

Sub Port_ReadBit(port As Byte) As Byte

Description

The function Port_ReadBit reads the value of a Pin that is configured for input. (See Pin Assignment of
M32 and M128).

 Port Bit access is always significant slower than the normal Port access that transfers 8 Bit. If the
desired values of all Port Bits are known, 8-Bit Port access is always preferable.

Parameter

portbit bit number of port (see table)

Return Parameter

bit value (0 or 1)

Portbits Table

Definition Portbit

PortA.0 0
... ...

PortA.7 7
PortB.0 8

... ...

PortB.7 15

PortC.0 16

... ...

PortC.7 23

PortD.0 24

... ...

PortD.7 31

from here only Mega128
PortE.0 32

... ...

211Libraries

© 2011 Conrad Electronic

PortE.7 39

PortF.0 40

... ...

PortF.7 47

PortG.0 48

... ...

PortG.4 52

6.17.5 Port_Toggle

Port Functions

Syntax

void Port_Toggle(byte port);

Sub Port_Toggle(port As Byte)

Description

Inverts all Bits on the specified port. Only the Pins of port that are configured for output will show their value

as port output on their bit position (see Pin Assignment of M32 and M128). Is a Pin configured as input,
this will set an internal pull-up resistor on (bit = 1) or off (bit = 0). See Pin Assignment of M32 and
M128.

Parameter

port port number (see table)

port number table

Definition Value

PortA 0

PortB 1

PortC 2

PortD 3

PortE (Mega128) 4

PortF (Mega128) 5

PortG (Mega128) 6

6.17.6 Port_ToggleBit

Port Functions

Syntax

void Port_ToggleBit(byte portbit);

212 C-Control Pro Mega Series

© 2011 Conrad Electronic

Sub Port_ToggleBit(portbit As Byte)

Description

The function Port_WriteBit inverts the value of a Pin that is configured for output. Is a Pin configured as
input, this will set an internal pull-up resistor on (bit = 1) or off (bit = 0). See Pin Assignment of M32
and M128.

 Port Bit access is always significant slower than the normal Port access that transfers 8 Bit. If the
desired values of all Port Bits are known, 8-Bit Port access is always preferable.

Parameter

portbit bit number of port (see table)

Portbits Table

Definition Portbit

PortA.0 0
... ...

PortA.7 7
PortB.0 8

... ...
PortB.7 15
PortC.0 16

... ...
PortC.7 23
PortD.0 24

... ...
PortD.7 31

from here only Mega128

PortE.0 32
... ...

PortE.7 39
PortF.0 40

... ...
PortF.7 47
PortG.0 48

... ...
PortG.4 52

6.17.7 Port_Write

Port Functions Example

Syntax

void Port_Write(byte port,byte val);

Sub Port_Write(port As Byte,val As Byte)

213Libraries

© 2011 Conrad Electronic

Description

Writes a byte to the specified port. Only the Pins of port that are configured for output will show their value

as port output on their bit position (see Pin Assignment of M32 and M128). Is a Pin configured as input,
this will set an internal pull-up resistor on (bit = 1) or off (bit = 0). See Pin Assignment of M32 and
M128.

Parameter

port port number (see table)
val output byte

port number table

Definition Value

PortA 0

PortB 1

PortC 2

PortD 3

PortE (Mega128) 4

PortF (Mega128) 5

PortG (Mega128) 6

6.17.8 Port_WriteBit

Port Functions

Syntax

void Port_WriteBit(byte portbit,byte val);

Sub Port_WriteBit(portbit As Byte,val As Byte)

Description

The function Port_WriteBit sets the value of a Pin that is configured for output. Is a Pin configured as
input, a Port_WriteBit() will set an internal pull-up resistor on (bit = 1) or off (bit = 0). See Pin

Assignment of M32 and M128.

Parameter

portbit bit number of port (see table)
val bit value (0 or 1)

214 C-Control Pro Mega Series

© 2011 Conrad Electronic

Portbits Table

Definition Portbit

PortA.0 0

... ...

PortA.7 7

PortB.0 8

... ...

PortB.7 15

PortC.0 16

... ...

PortC.7 23

PortD.0 24

... ...

PortD.7 31

from here only Mega128

PortE.0 32

... ...

PortE.7 39

PortF.0 40

... ...

PortF.7 47

PortG.0 48

... ...

PortG.4 52

6.17.9 Port Example

// Program toggles the LED's on the applicationboard

// alternately every second

void main(void)
{
 Port_DataDirBit(PORT_LED1,PORT_OUT);
 Port_DataDirBit(PORT_LED2,PORT_OUT);

 while(true) // endless loop
 {
 Port_WriteBit(PORT_LED1,PORT_ON);
 Port_WriteBit(PORT_LED2,PORT_OFF);
 AbsDelay(1000);
 Port_WriteBit(PORT_LED1,PORT_OFF);
 Port_WriteBit(PORT_LED2,PORT_ON);
 AbsDelay(1000);
 }
}

215Libraries

© 2011 Conrad Electronic

6.18 RC5

A common used standard protocol for infrared data communication is the RC5 code, originally
developed by Phillips. This code has an instruction set of 2048 different instructions and is divided
into 32 address of each 64 instructions. Every kind of equipment use his own address, so this
makes it possible to change the volume of the TV without change the volume of the hifi. The
transmitted code is a dataword wich consists of 14 bits.

Original protocol:

2 start bits for the automatic gain control in the infrared receiver
1 toggle bit (changes every time a new button is pressed on the IR transmitter)
5 address bits for the system address
6 instruction bits for the pressed key

The start bits help the IR receiver to synchronize and to adjust the automatic gain control of the
signal. The toggle bit changes its value with every keypress. Therefore it is possible to distinguish
the long press of a key with repeated presses of the same key. After a while there was a need to
extend the number of possible instructions from 64 to 128. To maintain compatibility the second
start bit was used for this purpose. If the second start bit is "1", the first 64 instructions can be
addressed, if the 2nd start bit is "0" the next 64 instructions can be selected.

How are the individual bits transferred?

The C-Control Pro generates a carrier frequency of 36Khz on the configured pin, that is connected to
the IR-Diode. All transmission pulses are 6,9444 long. There is a delay of 20,8332 µs between two
pulses. For a "1" value, the frequency generation of the transmission is turned of for 889µs, and then
turned on for 889µs (this equals to 32 IR impulses). A value of "0" is created with a pause of 889µs,
followed from a frequency generation of 889µs. The time to transfer a whole bit is 1,778ms (2 *
889µs) and to transfer a complete 14 bit dataword is 24,889ms. If akey on remote control is pressed
for a longer duration, the corresponding dataword is repeated every 113m778ms.

216 C-Control Pro Mega Series

© 2011 Conrad Electronic

Connection to C-Control Pro (Sender diode)

Connection to C-Control Pro (Receiver)

Pin assignment of TSOP1736 IR-Receiver

217Libraries

© 2011 Conrad Electronic

Internal struture of receiver

218 C-Control Pro Mega Series

© 2011 Conrad Electronic

External circuit of receiver for connection to C-Control Pro

6.18.1 RC5_Init

RC5 Functions

Syntax

void RC5_Init(byte pin);

Sub RC5_Init(pin As Byte)

Description

The port pin is defined, that is connected to RC5 sender or receiver.

219Libraries

© 2011 Conrad Electronic

Parameter

pin bit number of port (see table)

Portbits Table

Definition Portbit

PortA.0 0
... ...

PortA.7 7
PortB.0 8

... ...
PortB.7 15
PortC.0 16

... ...
PortC.7 23
PortD.0 24

... ...
PortD.7 31

from here only Mega128

PortE.0 32
... ...

PortE.7 39
PortF.0 40

... ...
PortF.7 47
PortG.0 48

... ...
PortG.4 52

6.18.2 RC5_Read

RC5 Functions

Syntax

word RC5_Read(void);

Sub RC5_Read() As Word

Description

Recognized RC5 datawords are received from the defined port pin. If there is no signal, the receive routine
waits up to 130ms. This is because there is a 113ms gap between two repeated RC5 datawords. A return
value of 0 means that no RC5 signal could be detected.

 This function will not recognize if a different format than RC-5 is used. In case of doubt it will return
wrong values.

Return Parameter

220 C-Control Pro Mega Series

© 2011 Conrad Electronic

14 Bit of the received RC-5 commands

6.18.3 RC5_Write

RC5 Functions

Syntax

void RC5_Write(word data);

Sub RC5_Write(data As Word)

Description

The 14 bit of a RC5 dataword are send to the defined port pin.

Parameter

data recognized RC5 dataword

6.19 RS232

The serial interface can be operated at speeds of up to 230.4 kilo baud. With the functions for the
serial interface the first parameter will indicate the port number (0 or 1). The Mega32 does only
provide one serial interface (0), while the Mega128 does provide two interfaces (0, 1).

 There is a chance to miss received characters when using the polled serial routines, especially at
high baud rates. If this is an issue, please use the interrupt driven serial routines with Serial_Init_IRQ()
instead of Serial_Init().

6.19.1 Divider

The functions Serial_Init() and Serial_Init_IRQ get a divider value as baudrate parameter. The
baudrate is derived from the processor clock (14,7456 MHz for Mega32, Mega128 and 16 MHz for
Mega128 CAN).

According to the Atmel processor handbook the following formula is used to calculate the divider for
a specified baudrate:

221Libraries

© 2011 Conrad Electronic

divider = (processor clock / baudrate / 16) -1

Example: 15 = (14745600 / 57600 / 16) -1

 It is difficult to obtain the standard baudrates from the 16 MHz processor clock of the Mega128
CAN. Therefore are differences at higher baudrates between both divider tables.

DoubleClock Mode

If the High-Bit of the divider is set, the DoubleClock Mode is enabled. In this mode the divider value
must be doubled. E.g. for 57600 baud a divider value of 0x0f (decimal 15) or 0x801e can be used.
For the MIDI baudrate (31250 baud) a divider of (14745600 / 31250 / 16) -1 = 28.49 had to be used.
If DoubleClock is enabled, the divider value can be specified more accurate: 0x8039

Table divider definition 14,7456 MHz (Mega32, Mega128):

divider definition baudrate

3071 SR_BD300 300bps

1535 SR_BD600 600bps

767 SR_BD1200 1200bps

383 SR_BD2400 2400bps

191 SR_BD4800 4800bps

 95 SR_BD9600 9600bps

 63 SR_BD14400 14400bps

 47 SR_BD19200 19200bps

 31 SR_BD28800 28800bps

0x8039 SR_BDMIDI 31250bps

 23 SR_BD38400 38400bps

 15 SR_BD57600 57600bps

 11 SR_BD76800 76800bps

 7 SR_BD115200 115200bps

 3 SR_BD230400 230400bps

Table divider definition 16 MHz (Mega128 CAN):

divider definition baudrate

3332 SR_BD300 300bps
1666 SR_BD600 600bps
832 SR_BD1200 1200bps
416 SR_BD2400 2400bps
207 SR_BD4800 4800bps
103 SR_BD9600 9600bps
68 SR_BD14400 14400bps
51 SR_BD19200 19200bps
34 SR_BD28800 28800bps
31 SR_BDMIDI 31250bps

222 C-Control Pro Mega Series

© 2011 Conrad Electronic

25 SR_BD38400 38400bps
0x8022 SR_BD57600 57600bps

12 SR_BD76800 76800bps
6 SR_BD125000 125000bps
3 SR_BD250000 250000bps

6.19.2 Serial_Disable

Serial Functions

Syntax

void Serial_Disable(byte serport);

Sub Serial_Disable(serport As Byte)

Description

The serial interface gets switched off and the corresponding ports can be used otherwise.

Parameter

serport interface number (0 = 1st serial port, 1 = 2nd serial port, ...)

6.19.3 Serial_Init

Serial Functions Example

Syntax

void Serial_Init(byte serport,byte par,byte divider);

Sub Serial_Init(serport As Byte,par As Byte,divider As Byte)

Description

The serial interface gets initialized. The parameter par is defined through successive or-ing of predefined
bit values. The values of character length, stop b its and parity are or'd together. E.g. "SR_7BIT | SR_2STOP
| SR_EVEN_PAR" means 7 bit character length, 2 stop bits and even parity (see Example). An example in
BASIC Syntax: "SR_7BIT Or SR_2STOP Or SR_EVEN_PAR". The baud rate is defined as a divider value
(see divider table).

 There is a chance to miss received characters when using the polled serial routines, especially at
high baud rates. If this is an issue, please use the interrupt driven serial routines with Serial_Init_IRQ()
instead of Serial_Init().

 It is possible to activate the DoubleClock Mode of the Atmel AVR. This happens if the Hi-bit of the
divider is set. In DoubleClock mode the normal value from the divider table must be doubled to get the
same baudrate. This has the advantage that baudrates, that have no exact divider value can be
represented. E.g. MIDI: The new value SB_MIDI (=0x803a) lies much nearer at the correct value of

223Libraries

© 2011 Conrad Electronic

31250baud. An example for 19200 baud: The normal divider value for 19200 baud is 0x002f. If
DoubleClock Mode is used, the divider must be doubled (=0x005e). Then set the Hi-bit, and the alternative
divider value for 19200 baud is 0x805e.

Parameter

serport interface number (0 = 1st serial port, 1 = 2nd serial port, ...)
par interface parameter (see par table)
divider baud rate initialization (see table)

table par definitions:

Definition Function

SR_5BIT 5 Bit char length
SR_6BIT 6 Bit char length
SR_7BIT 7 Bit char length
SR_8BIT 8 Bit char length

SR_1STOP 1 stop bit
SR_2STOP 2 stop bit

SR_NO_PAR no parity
SR_EVEN_PAR even parity
SR_ODD_PAR odd parity

6.19.4 Serial_Init_IRQ

Serial Functions Example

Syntax

void Serial_Init_IRQ(byte serport,byte ramaddr[],byte recvlen,byte sendlen,byte par,byte div);

Sub Serial_Init_IRQ(serport As Byte,ByRef ramaddr As Byte,recvlen As Byte,sendlen As Byte,
 par As Byte,div As Byte)

Description

The serial interface gets initialized for usage in interrupt mode. The user has to provide a global variable
as a serial buffer. This buffer services as a storage for the data that is sent to the serial interface and is
received from it. The size of the buffer must be length of the send buffer plus the length of the receive
buffer plus 6 bytes (see Example).

The maximum value for the size of the send and the receive buffer is 255 bytes each. The parameter par is
defined through successive or-ing of predefined bit values. The values of character length, stop b its and
parity are or'd together. E.g. "SR_7BIT | SR_2STOP | SR_EVEN_PAR" means 7 bit character length, 2 stop
bits and even parity (see Example). An example in BASIC Syntax: "SR_7BIT Or SR_2STOP Or
SR_EVEN_PAR". The baud rate is defined as a divider value (see divider table).

 The user supplied buffer must be available the whole time the serial interface is working. Since after

224 C-Control Pro Mega Series

© 2011 Conrad Electronic

leaving a function the local variables are no longer available, it is most times a good idea to provide the
user supplied buffer as a global variable.

 It is possible to activate the DoubleClock Mode of the Atmel AVR. This happens if the Hi-bit of the
divider is set. In DoubleClock mode the normal value from the divider table must be doubled to get the
same baudrate. This has the advantage that baudrates, that have no exact divider value can be
represented. E.g. MIDI: The new value SB_MIDI (=0x803a) lies much nearer at the correct value of
31250baud. An example for 19200 baud: The normal divider value for 19200 baud is 0x002f. If
DoubleClock Mode is used, the divider must be doubled (=0x005e). Then set the Hi-bit, and the alternative
divider value for 19200 baud is 0x805e.

 Please use Serial_ReadExt() if you work in serial IRQ mode. Serial_Read() only supports polled
mode.

Parameter

serport interface number (0 = 1st serial port, 1 = 2nd serial port, ...)
ramaddr address of the buffer
recvlen size of receive buffer
sendlen size of send buffer
par interface parameter (see par table)
divider baud rate initialization (see table)

table par definitions:

Definition Function

SR_5BIT 5 Bit char length
SR_6BIT 6 Bit char length
SR_7BIT 7 Bit char length
SR_8BIT 8 Bit char length

SR_1STOP 1 stop bit
SR_2STOP 2 stop bit

SR_NO_PAR no parity
SR_EVEN_PAR even parity
SR_ODD_PAR odd parity

6.19.5 Serial_IRQ_Info

Serial Functions

Syntax

byte Serial_IRQ_Info(byte serport, byte info);

Sub Serial_IRQ_Info(serport As Byte, info As Byte) As Byte

Description

225Libraries

© 2011 Conrad Electronic

In dependency of the info parameter the function returns how many bytes have been received or a written to
the send buffer.

Parameter

serport interface number (0 = 1st serial port, 1 = 2nd serial port)

info values:

RS232_FIFO_RECV (0) number of bytes received
RS232_FIFO_SEND(1) number of bytes written to he send buffer

Return Parameter

result in bytes

6.19.6 Serial_Read

Serial Functions

Syntax

byte Serial_Read(byte serport);

Sub Serial_Read(serport As Byte) As Byte

Description

Reads one byte from the serial interface. If is there is no byte available in the serial interface, the function
waits until a byte has been received.

 Please use Serial_ReadExt() if you work in serial IRQ mode. Serial_Read() only supports polled
mode.

Parameter

serport interface number (0 = 1st serial port, 1 = 2nd serial port)

Return Parameter

received byte from the serial interface

6.19.7 Serial_ReadExt

Serial Functions

Syntax

word Serial_ReadExt(byte serport);

Sub Serial_ReadExt(serport As Byte) As Word

226 C-Control Pro Mega Series

© 2011 Conrad Electronic

Description

Reads one byte from the serial interface. In opposite to Serial_Read() Serial_ReadExt() returns
immediately even if there is no byte available in the serial port. In this case 256 (0x100) is returned.

 Please use Serial_ReadExt() if you work in serial IRQ mode. Serial_Read() only supports polled
mode.

Parameter

serport interface number (0 = 1st serial port, 1 = 2nd serial port)

Return Parameter

received byte from the serial interface
256 (0x100) if there was no byte available

6.19.8 Serial_Write

Serial Functions Example

Syntax

void Serial_Write(byte serport, byte val);

Sub Serial_Write(serport As Byte, val As Byte)

Description

One byte is send to the serial interface.

Parameter

serport interface number (0 = 1st serial port, 1 = 2nd serial port)
val output byte value

6.19.9 Serial_WriteText

Serial Functions

Syntax

void Serial_WriteText(byte serport,char text[]);

Sub Serial_WriteText(serport As Byte,ByRef Text As Char)

Description

All characters of the char array up to the terminating zero are send to the serial interface.

227Libraries

© 2011 Conrad Electronic

Parameter

serport interface number (0 = 1st serial port, 1 = 2nd serial port)
text char array

6.19.10 Serial Example

// string output on the serial interface
void main(void)
{
 int i;
 char str[10];

 str="test";
 i=0;

 // initialize serial port with 19200baud, 8 bit, 1 stop bit, no parity
 Serial_Init(0,SR_8BIT|SR_1STOP|SR_NO_PAR,SR_BD19200);

 while(str[i]) Serial_Write(0,str[i++]); // output string to serial port
}

6.19.11 Serial Example (IRQ)

// 35 byte send + receive buffer + 6 byte internal FIFO organization

byte buffer[41]; // array declaration

// string output to serial interface
void main(void)
{
 int i;
 char str[10];

 str="test";
 i=0;

 // initialize serial port with 19200baud, 8 bit, 1 stop bit, no parity

 // 20 byte receive buffer - 15 byte send buffer
 Serial_Init_IRQ(0,buffer,20,15,SR_8BIT|SR_1STOP|SR_NO_PAR,SR_BD19200);

 while(str[i]) Serial_Write(0,str[i++]); // display string

 while(1); // endless loop
}

6.20 SDCard

The C-Control Pro SD Card interface is used for connecting a microcontroller, such as C-Control Unit
128 Mega (Conrad Item no. 198 219) to a 3.3 SD card. The SD-card expansion features a level
converter, which bidirectional converts the signals, allowing a direct connection of the SD card to a
5V microcontroller. All memory cards, on the market this time, such as SD, SDHC, MMC and other

228 C-Control Pro Mega Series

© 2011 Conrad Electronic

cards can be used with a corresponding SD card adapter.

Card holder PIN Mega128

WP PE.5

CD PB.4

MISO PB.3

MOSI PB.2

SCK PB.1

SS PB.0

EN1 PB.5

LED PB.7

EN2 PB.6

WP (Write Protect):
high = write protected SD card
low = access allowed

CD (Card Detect):
high = SD-Card not recognized
low = SD-Card detected

SPI- Interface:
MISO
MOSI
SCK
SS

Other:
LED -> User Led (5V level)

Reset Circuit:
En1 = Reset the SD-Card (low = running mode / high = reset)

229Libraries

© 2011 Conrad Electronic

En2 = Supply SD-Card holder (low = off / high = on)
The bottom diagram shows the performance of the hardware reset.

Insert SD-Card:
The SD card must always be inserted that the contacts show towards the circuit board of the SD-
Card interface. An incorrect insertion of the SD-Card may damage the card holder.

Technical data:
Supply voltage: +5V/DC
Current consumption: max. 150mA
SPI inputs and outputs: 5V level (TTL)
Permissible ambient temperature: 0° C to +70 °C
Permissible ambient relative humidity: 20 - 80% RH, noncondensing
Dimensions: approx 53.5 x 42 x 4.5 mm
Weight: 10g

6.20.1 SDC Return Values

All SDC Functions return a status Byte that describes the success of the SDC operation.

Error Value Description

FR_OK 0 operation successful
FR_DISK_ERR 1 physical access failed
FR_INT_ERR 2 wrong FAT structure or internal error

 FR_NOT_READY 3 no disk available
 FR_NO_FILE 4 file not found
 FR_NO_PATH 5 path not correct

 FR_INVALID_NAME 6 invalid file name
FR_DENIED 7 file access denied
 FR_EXIST 8 file already exists

 FR_INVALID_OBJECT 9 file not opened with SDC_FOpen
 FR_WRITE_PROTECTED 10 disk write protected

 FR_INVALID_DRIVE 11 drive number invalid
 FR_NOT_ENABLED 12 logical drive not mounted
FR_NO_FILESYSTEM 13 no FAT table found on disk
FR_MKFS_ABORTED 14 not possible, since mkfs not available

FR_TIMEOUT 15 device is not answering

230 C-Control Pro Mega Series

© 2011 Conrad Electronic

6.20.2 SDC_FClose

SDCard Functions

Syntax

byte SDC_FClose(byte fil_ramaddr[]);

Sub SDC_FClose(ByRef fil_ramaddr As Byte) As Byte

Description

Closes a previously opened file.

Parameter

fil_ramaddr address of the FILE buffer

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.3 SDC_FOpen

SDCard Functions

Syntax

byte SDC_FOpen(byte fil_ramaddr[], char path[], byte mode);

Sub SDC_FOpen(ByRef fil_ramaddr As Byte, ByRef path As Char, mode As Byte) As Byte;

Description

Opens a file. For each open file a FILE buffer has to be created. For this we define a byte array of size 32.

 The user-provided RAM buffer must be reserved during the access to the SD Card. Since local
variables will be released after leaving the function, it usually makes sense to declare the buffer as a
global variable.

Parameter

fil_ramaddr address of the FILE buffer
path file path
mode file mode

Return Parameter

Success of the called SDC function. See SDC Return Values.

231Libraries

© 2011 Conrad Electronic

mode parameter:

The individual parameters are ORed like e.g.:

 FA_CREATE_NEW | FA_WRITE // CompactC
 FA_CREATE_NEW Or FA_WRITE ' BASIC

Mode Value Description

FA_OPEN_EXISTING 0x00 Opens file. If file does not exist, then error
FA_READ 0x01 File reading allowed
FA_WRITE 0x02 File writing allowed

 FA_CREATE_NEW 0x04 Creates file, if file already exists, then error
 FA_CREATE_ALWAYS 0x08 Creates file, if file already exists, then file is truncated

 FA_OPEN_ALWAYS 0x10 Opens file. If file does not exist, then file is created

6.20.4 SDC_FRead

SDCard Functions

Syntax

byte SDC_FRead(byte fil_ramaddr[], byte buf[], word btr, word br[]);

Sub SDC_FRead(ByRef fil_ramaddr As Byte, ByRef buf As Byte, btr As Word, ByRef br As Word) As Byte

Description

Reads data from an open file. The data is written at the reading position from the file into the buffer buf.
The number of bytes to read is btr, the number of bytes that were actually read is copied in the first
element of br. The reading position can be determined with SDC_FSeek.

Parameter

fil_ramaddr address of the FILE buffer
buf RAM address to where the bytes a read from the SD-Card
btr number of bytes to read
br actual number of bytes read

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.5 SDC_FSeek

SDCard Functions

Syntax

byte SDC_FSeek(byte fil_ramaddr[], dword pos);

232 C-Control Pro Mega Series

© 2011 Conrad Electronic

Sub SDC_FSeek(ByRef fil_ramaddr As Byte, pos As ULong) As Byte

Description

Sets the read / write position of the opened file. The position pos is always counted from the beginning of
the file.

Parameter

fil_ramaddr address of the FILE buffer
pos read / write position

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.6 SDC_FSetDateTime

SDCard Functions

Syntax

byte SDC_FSetDateTime(char path[], byte day, byte mon, word year, byte min, byte hours, byte sec);

Sub SDC_FSetDateTime(ByRef path As Char, day As Byte, mon As Byte, year As Word, min As Byte, hours As Byte, sec As Byte) As Byte

Description

Set the date and time attributes of a file.

Parameter

path file path
day Day (1-31)
mon Month (1-12)
year Year (1980-2107)
min Minute (0-59)
hours Gour (0-23)
sec Second (0-59) (is always set to an even value)

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.7 SDC_FStat

SDCard Functions

Syntax

byte SDC_FStat(char path[], dword filinfo[]);

233Libraries

© 2011 Conrad Electronic

Sub SDC_FStat(ByRef path As Char, ByRef filinfo As ULong) As Byte

Description

Read attributes of a file to a dword (ULong) array with 4 elements.

Parameter

path file path
filinfo return array

Return Parameter

Success of the called SDC function. See SDC Return Values.

Rückgabe Array:

 fileinfo[0] file length

 fileinfo[1] date

 fileinfo[2] time

 fileinfo[3] file attribute

Coding date:
Bits 0:4 - day: 1...31
Bits 5:8 - month: 1...12
Bits 9:15 - year begin with 1980: 0...127

Coding time:
Bits 0:4 - seconds/2: 0...29
Bits 5:10 - minute: 0...59
Bits 11:15 - hour: 0...23

Coding file attribute:
Bit 1: Read Only
Bit 2: Hidden
Bit 3: Volume label
Bit 4: Directory
Bit 5: Archive

6.20.8 SDC_FSync

SDCard Functions

Syntax

byte SDC_FSync(byte fil_ramaddr[]);

Sub SDC_FSync(ByRef fil_ramaddr As Byte) As Byte

Description

234 C-Control Pro Mega Series

© 2011 Conrad Electronic

Waits for all data to be written from the buffer into the file on the SD-Card.

Parameter

fil_ramaddr address of the FILE buffer

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.9 SDC_FTruncate

SDCard Functions

Syntax

byte SDC_FTruncate(byte fil_ramaddr[]);

Sub SDC_FTruncate(ByRef fil_ramaddr As Byte) As Byte

Description

Delete the rest of the file from the current cursor position.

Parameter

fil_ramaddr address of the FILE buffer

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.10 SDC_FWrite

SDCard Functions

Syntax

byte SDC_FWrite(byte fil_ramaddr[], byte buf[], word btr, word br[]);

Sub SDC_FWrite(ByRef fil_ramaddr As Byte, ByRef buf As Byte, btr As Word, ByRef br As Word) As Byte

Description

Writes data to an open file. The data from the buffer buf is written to the file at current file position. The
parameter btr determines number of bytes to write. The number of bytes actual written is copied into the
first element of br. The write position can be determined with SDC_FSeek.

Parameter

fil_ramaddr address of the FILE buffer

235Libraries

© 2011 Conrad Electronic

buf RAM address from where the bytes a written to the SD-Card
btr number of bytes to write
br actual number of bytes written

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.11 SDC_GetFree

SDCard Functions

Syntax

byte SDC_GetFree(char path[], dword kbfree[]);

Sub SDC_GetFree(ByRef path As Char, ByRef kbfree As ULong) As Byte

Description

Returns the number of free clusters on the SD Card. The number of free clusters is copied to the first
element of the array kbfree.

Parameter

path path to the root of the disk.
kbfree return array

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.12 SDC_Init

SDCard Functions

Syntax

void SDC_Init(byte fat_ramaddr[]);

Sub SDC_Init(ByRef fat_ramaddr As Byte)

Description

Initializes the SD card library. For this operation a FAT buffer must be created. Therefore an array of size
562 is declared.

 The user-provided RAM buffer must be reserved during the access to the SD Card. Since local
variables will be released after leaving the function, it usually makes sense to declare the buffer as a
global variable.

Parameter

236 C-Control Pro Mega Series

© 2011 Conrad Electronic

fat_ramaddr address of the FAT buffer

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.13 SDC_MkDir

SDCard Functions

Syntax

byte SDC_MkDir(char path[]);

Sub SDC_MkDir(ByRef path As Char) As Byte

Description

Creates a directory on the SD-Card.

Parameter

path path to the directory

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.14 SDC_Rename

SDCard Functions

Syntax

byte SDC_Rename(char oldpath[], char newpath[]);

Sub SDC_Rename(ByRef oldpath As Char, ByRef newpath As Char) As Byte

Description

Renames a file from oldpath to newpath.

Parameter

oldpath file path

237Libraries

© 2011 Conrad Electronic

newpath path to file with new name

 If newpath points to a directory other than oldpath, the file is not renamed only, but also moved into the
new directory. In newpath may not be logical disk number, only in oldpath.

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.15 SDC_Unlink

SDCard Functions

Syntax

byte SDC_Unlink(char path[]);

Sub SDC_Unlink(ByRef path As Char) As Byte

Description

Deletes a file.

Parameter

path file path

Return Parameter

Success of the called SDC function. See SDC Return Values.

6.20.16 SD-Card Example

// Global variables
byte fat[562];
byte fil[32];

void main(void)
{

 // Local variables
 byte res;
 char buf[100];
 word bytes_written[1];

 // SD-Card reset

 Port_DataDirBit(13,1); // PB.5 = output (EN1)

 Port_DataDirBit(14,1); // PB.6 = Ausgang (EN2)

 Port_WriteBit(13,1); // set EN1 for 50ms at +5V (PB.5)

 Port_WriteBit(14,0); // set EN2 for 50ms to GND (PB.6)

 AbsDelay(50); // 50ms break

238 C-Control Pro Mega Series

© 2011 Conrad Electronic

 Port_WriteBit(13,0); // EN1 GND

 Port_WriteBit(14,1); // EN2 +5V

 // Power on -> SD-Card

 Port_WriteBit(14,1); // EN2 (PB.6) +5V

 AbsDelay(50); // 50ms Pause

 // SD-Card Fat init
 SDC_Init (fat);

 // Create a new file folders
 SDC_MkDir("0:/CC-PRO");

 // Does the file already exists?

 // If the file is not created
 res=SDC_FOpen(fil, "0:/CC-PRO/test.txt", FA_READ|FA_WRITE|FA_OPEN_EXISTING);
 if(res!=0)SDC_FOpen(fil, "0:/CC-PRO/test.txt", FA_WRITE|FA_CREATE_ALWAYS);

 // Writes to a text file
 buf= "Hallo... 123!\r\n";
 SDC_FWrite(fil, buf, Str_Len(buf), bytes_written);
 SDC_FSync(fil);

 // File is closed
 SDC_FClose(fil);
}

6.21 Servo

RC servos are composed of a DC motor mechanically linked to a potentiometer. Pulse-width
modulation (PWM) signals sent to the servo are translated into position commands by electronics
inside the servo. When the servo is commanded to rotate, the DC motor is powered until the
potentiometer reaches the value corresponding to the commanded position. The servo is controlled
by three wires: ground (usually black/orange), power (red) and control (brown/other colour). The servo
will move based on the pulses sent over the control wire, which set the angle of the actuator arm.
The servo expects a pulse every 20 ms in order to gain correct information about the angle. The
width of the servo pulse dictates the range of the servo's angular motion. A servo pulse of 1.5 ms
width will set the servo to its "neutral" position, or 90°. For example a servo pulse of 1.25 ms could
set the servo to 0° and a pulse of 1.75 ms could set the servo to 180°. The physical limits and
timings of the servo hardware varies between brands and models, but a general servo's angular
motion will travel somewhere in the range of 180° - 210° and the neutral position is almost always at
1.5 ms.

Connection to C-Control Pro

239Libraries

© 2011 Conrad Electronic

+5Volt ist the supply voltage of the servo, it must provide enough current to drive the servo. The
ground of the servo and the ground of the C-Control Pro unit must be the same. The pulse for the
servo is generated by the PWM signal of the C-Control unit.

6.21.1 Servo_Init

Servo Functions Example

Syntax

void Servo_Init(byte servo_cnt, byte servo_interval, byte ramaddr[], byte timer);

Sub Servo_Init(servo_cnt As Byte, servo_interval As Byte, ByRef ramaddr As Byte, timer As Byte)

Description

Intializes the internal servo routines. The servo_cnt parameter controls how many servos can be
driven at the same time. The servo_interval parameter describes the period length (10 or 20ms), with
timer the used 16-Bit timer can be chosen. Timer 3 is only available on the Mega128. The user must
supply ram space to operate the servos. The required size is servo_cnt * 3. E.g., if the user wants to
operate 10 servos, at byte array of 30 bytes is needed.

 A 16-bit Timer is needed for the servo steering routines. This has to be Timer 1 or Timer 3 (Mega128).
Is the timer turned off, or is used for other purposes the servo routines will not work.

 The user supplied ram space must be available the whole time the servos are working. Since after
leaving a function the local variables are no longer available, it is most times a good idea to provide the
user supplied ram as a global variable.

240 C-Control Pro Mega Series

© 2011 Conrad Electronic

Parameter

servo_cnt number of possible servos (maximum 20)
servo_interval periodic length (0=10ms, 1=20ms)
ramaddr address of memory block
timer 16-Bit Timer used for servo steering (0=Timer 1, 1=Timer 3 only Mega128)

6.21.2 Servo_Set

Servo Functions Example

Syntax

void Servo_Set(byte portbit, word pos);

Sub Serial_Init(portbit As Byte, pos As Word)

Description

Sets the pulse length to steer the actuator arm. The output port is set with the portbit parameter
(See Pin Assignment of M32 and M128).

 The sum of all user set pulse lengths should not exceed the period length (see servo_interval
parameter), otherwise an erratic behaviour could happen. E.g. with 20ms period length, a total of 8 servos
can each be set to a pulse length of 2500µs. To have some safety margin, the sum of the pulse lengths
should be less than the period length for a small amount.

Parameter

portbit bit number of port (see table)
pos pulse length for servo in µsec (500 - 2500)

Portbits Table

Definition Portbit

PortA.0 0
... ...

PortA.7 7
PortB.0 8

... ...
PortB.7 15
PortC.0 16

... ...
PortC.7 23
PortD.0 24

... ...
PortD.7 31

from here only Mega128
PortE.0 32

241Libraries

© 2011 Conrad Electronic

... ...
PortE.7 39
PortF.0 40

... ...
PortF.7 47
PortG.0 48

... ...
PortG.4 52

6.21.3 Servo Example

byte servo_var[30]; // Servo internal variables

// Activation of 3 Servos and stop after 10 seconds
void main(void)
{
 // Max. 10 Servos, 20ms interval, Timer 3
 Servo_Init(10, 1, servo_var, 1);

 Servo_Set(7, 2000); // Servo Portbit 7 2000µs
 Servo_Set(6, 1800); // Servo Portbit 6 1800µs
 Servo_Set(5, 1600); // Servo Portbit 5 1600µs

 AbsDelay(5000);

 Servo_Set(7, 1000); // Servo Portbit 7 1000µs

 AbsDelay(5000);

 Servo_Set(7, 0); // all Servos off
 Servo_Set(6, 0);
 Servo_Set(5, 0);
}

6.22 SPI

The Serial Peripheral Interface Bus or SPI bus is a synchronous serial data link standard named by
Motorola that operates in full duplex mode. Devices communicate in master/slave mode where the
master device initiates the data frame. Multiple slave devices are allowed with individual slave select
(chip select) lines.

6.22.1 SPI_Disable

SPI Functions

Syntax

void SPI_Disable(void);

Sub SPI_Disable()

242 C-Control Pro Mega Series

© 2011 Conrad Electronic

Description

The SPI will be disabled and the corresponding ports can be used otherwise.

 Disabling the SPI interface will prevent usage of the USB interface on the application board. On the
other hand, if you don't use the USB interface, SPI_Disable() will allow to use these ports for other
purposes.

Parameter

None

6.22.2 SPI_Enable

SPI Functions

Syntax

void SPI_Enable(byte ctrl);

Sub SPI_Enable(ctrl As Byte)

Description

The SPI interface is initialized with the value of ctrl (see SPCR register in Atmel Mega Reference Manual).

Parameter

ctrl initialization parameter (Mega SPCR Register)

Bit 7 - SPI Interrupt Enable (do not enable, cannot be used from C-Control Pro now)
Bit 6 - SPI Enable (must be set)
Bit 5 - Data Order (1 = LSB first, 0 = MSB first)
Bit 4 - Master/Slave Select (1 = Master, 0 = Slave)
Bit 3 - Clock polarity (1 = leading edge falling, 0 = leading edge rising)
Bit 2 - Clock Phase (1 = sample on trailing edge, 0 = sample on leading edge)

Bit 1 Bit 0 SCK Frequency

0 0 f
Osc

 / 4

0 1 f
Osc

 / 16

1 0 f
Osc

 / 64

1 1 f
Osc

 / 128

 Please consider, that f
Osc

= 14,7456 Mhz for C-Control Pro Mega 32 and Mega128 , while the

C-Control Pro Mega128 CAN works at 16 Mhz.

243Libraries

© 2011 Conrad Electronic

6.22.3 SPI_Read

SPI Functions

Syntax

byte SPI_Read();

Sub SPI_Read() As Byte

Description

A byte is read from the SPI interface.

Return Parameter

received byte from the SPI interface

6.22.4 SPI_ReadBuf

SPI Functions

Syntax

void SPI_ReadBuf(byte buf[], byte length);

Sub SPI_ReadBuf(ByRef buf As Byte, length As Byte)

Description

A number of bytes are read from the SPI interface into an array.

Parameter

buf pointer to byte array
length number of bytes to read

6.22.5 SPI_Write

SPI Functions

Syntax

void SPI_Write(byte data);

Sub SPI_Write(data As Byte)

Description

244 C-Control Pro Mega Series

© 2011 Conrad Electronic

One byte is send to the serial interface.

Parameter

data output byte value

6.22.6 SPI_WriteBuf

SPI Functions

Syntax

void SPI_WriteBuf(byte buf[], byte length);

Sub SPI_WriteBuf(ByRef buf As Byte, length As Byte)

Description

 A number of bytes are sent to the SPI interface.

Parameter

buf pointer to byte array
length number of bytes to be transferred

6.23 Strings

One part of these string routines is implemented in the Interpreter, another can be called up after
appending library "String_Lib.cc". Since the functions in "String_Lib.cc" are realized through
Bytecode they are slower when executed. Library functions however have the advantage that they
can be taken from the project by omitting the library in case they are not needed. Direct Interpreter
functions are always present, will however take up flash memory.
 There is no explicit "String" data type. A string is based on a character array. The size of the array
must be chosen in such a way that all characters of the string fit into the character array.
Additionally some space is needed for a terminating character (decimal Zero) in order to indicate the
end of the character string.

6.23.1 Str_Comp

String Functions

Syntax

char Str_Comp(char str1[],char str2[]);

Sub Str_Comp(ByRef str1 As Char,ByRef str2 As Char) As Char

245Libraries

© 2011 Conrad Electronic

Description

Two strings are compared.

Parameter

str1 pointer to char array 1
str2 pointer to char array 2

Return Parameter

0 both strings are equal
<0 if the first string is smaller than the second
>0 if the first string is greater than the second

Remark

 The attribute smaller or greater is specified for the character difference at the first point of difference
between both strings.

6.23.2 Str_Copy

String Functions

Syntax

void Str_Copy(char destination[],char source[],word offset);

Sub Str_Copy(ByRef destination As Char,ByRef source As Char,offset As
Word)

Description

The source string (source) is copied to the destination string (destination). During copying also the string
termination character of the source character string is copied.

Parameter

destination pointer to destination string

source pointer to source string

offset Number of characters by which the source string is offset when copied to the destination
string..

If offset has the value STR_APPEND (0xffff) then the length of the destination string is assumed as
offset. In this case the source string is copied behind the destination string.

6.23.3 Str_Fill

String Functions (Library "String_Lib.cc")

Syntax

246 C-Control Pro Mega Series

© 2011 Conrad Electronic

void Str_Fill(char dest[],char c,word len);

Sub Str_Fill(ByRef dest As Char,c As Char,len As Word)

Description

The string dest is filled with character c.

Parameter

dest pointer to destination string

c character that is written into the string
len count, how often c is written into the string

6.23.4 Str_Isalnum

String Functions (Library "String_Lib.cc")

Syntax

byte Str_Isalnum(char c);

Sub Str_Isalnum(c As Char) As Byte

Description

A character is tested if it is alphabetically or a digit.

Parameter

c tested character

Return Parameter

1 if the character is alphabetically or a digit (upper- or lowercase)
0 else

6.23.5 Str_Isalpha

String Functions (Library "String_Lib.cc")

Syntax

byte Str_Isalpha(char c);

Sub Str_Isalpha(c As Char) As Byte

Description

A character is tested if it is alphabetically.

247Libraries

© 2011 Conrad Electronic

Parameter

c tested character

Return Parameter

1 if the character is alphabetically (upper- or lowercase)
0 else

6.23.6 Str_Len

String Functions

Syntax

word Str_Len(char str[]);

Sub Str_Len(ByRef str As Char) As Word

Description

The length of the string (character array) is returned.

Parameter

str pointer to string

Return Parameter

length of the string (without terminating zero)

6.23.7 Str_Printf

String Functions Example

Syntax

void Str_Printf(char str[], char format[], ...);

Sub Str_Printf(ByRef str As Char, ByRef format As Char, ...)

Description

This function creates a formatted string into str. The format string is similar to the formatting of printf() in C.
The format always begins with "%", then follow optional flags (0,l), and it ends with a type (d,x,s,f). In the
following table all type parameters are explained. Between % and type an optional width and precision
can be used.

%[flags][width][.prec]Typ (the brackets describes the optional part)

248 C-Control Pro Mega Series

© 2011 Conrad Electronic

The width is the minimal space for the output of the number. If the number is smaller than width, the
number is padded to the left with spaces. If the width begins with "0" the left is padded width "0" instead of
spaces. A period "." describes an optional precision parameter, that defines the number of decimal
places, when floating point numbers (%f) are used, or the base of the number when using unsigned
integer (%u). See Str_Printf Example.

 If there is no "l" flag when a 32-Bit number is printed, only the lower 16 bits are displayed.

 Flags Description
 0 padd with "0"
 l 32-Bit Integer

 Format Description
 %[width]d integer
 %[width][.prec]u unsigned integer
 %[width]x hexadecimal
 %[width][.prec]f floating point
 %[width]s string
 %[width]c char

Parameter

str pointer to string
format pointer to format string

6.23.8 Str_ReadFloat

String Functions

Syntax

float Str_ReadFloat(char str[]);

Sub Str_ReadFloat(ByRef str As Char) As Single

Description

The value of a string representing a floating point number is returned. The number is recognized,
even if there or other characters after the number.

Parameter

str pointer to string

Return Parameter

floating point value of string

249Libraries

© 2011 Conrad Electronic

6.23.9 Str_ReadInt

String Functions

Syntax

int Str_ReadInt(char str[]);

Sub Str_ReadInt(ByRef str As Char) As Integer

Description

The value of a string representing an integer number is returned. The number is recognized, even if
there or other characters after the number.

Parameter

str pointer to string

Return Parameter

integer value of string

6.23.10 Str_ReadNum

String Functions

Syntax

word Str_ReadNum(char str[], byte base);

Sub Str_ReadNum(ByRef str As Char, base As Byte) As Word

Description

The value of a string representing an unsigned number is returned. The number is recognized, even if
there or other characters after the number. The base parameter is the base of the numeric value. E.
g. to read a hexadecimal number, a base of 16 is to apply.

Parameter

str pointer to string
base base of converted number

Return Parameter

numeric value of string

250 C-Control Pro Mega Series

© 2011 Conrad Electronic

6.23.11 Str_Substr

String Functions (Library "String_Lib.cc")

Syntax

int Str_SubStr(char source[],char search[]);

Sub Str_SubStr(ByRef source As Char,ByRef search As Char) As Integer

Description

A substring search is searched inside string source. If the substring is found, the position of the substring
is returned.

Parameter

source string that is searched
search substring that is looked for

Return Parameter

position of the found substring
-1 else

6.23.12 Str_WriteFloat

String Functions

Syntax

void Str_WriteFloat(float n, byte decimal, char text[], word offset);

Sub Str_WriteFloat(n As Single,decimal As Byte,ByRef text As Char,offset
 As Word)

Description

The floating point number n is converted to an ASCII string with decimal number of decimal digits after the
period. The result is stored in the string text with an offset of offset. The offset parameter is used to change
a string after a specified number (offset) of characters and leave the beginning of the string intact.

Parameter

n float number
decimal number of decimal digit after the period
text pointer to destination string
offset offset that is applied to the position where the string is copied

If offset has the value STR_APPEND (0xffff) then the length of the destination string is assumed as
offset. In this case the source string is copied behind the destination string.

251Libraries

© 2011 Conrad Electronic

6.23.13 Str_WriteInt

String Functions

Syntax

void Str_WriteInt(int n, char text[], word offset);

Sub Str_WriteInt(n As Integer,ByRef text As Char,offset As Word)

Description

The integer number n is converted to a signed ASCII string. The result is stored in the string text with an
offset of offset. The offset parameter is used to change a string after a specified number (offset) of
characters and leave the beginning of the string intact.

Parameter

n integer number
text pointer to destination string
offset offset that is applied to the position where the string is copied

If offset has the value STR_APPEND (0xffff) then the length of the destination string is assumed as
offset. In this case the source string is copied behind the destination string.

6.23.14 Str_WriteWord

String Functions

Syntax

void Str_WriteWord(word n,byte base,char text[],word offset,byte
minwidth);

Sub Str_WriteWord(n As Word,base As Byte,ByRef text As Char,offset As
Word, minwidth As Byte)

Description

The word n is converted to an ASCII string. The result is stored in the string text with an offset of offset. The
offset parameter is used to change a string after a specified number (offset) of characters and leave the
beginning of the string intact. If the resulting string is smaller than minwidth the beginning of the string
gets filled with zeros "0".

The base of the numbering system can be given in the base parameter. If you set base to 2, you will get a
string with binary digits. A base of 8 produces an octal string, and a base of 16 a hexadecimal string. If the
base is set to a number greater than 16, more characters of the alphabet are used. E.g. a base of 18
produces a string with the digits '0'-'9' and 'A'-'H'.

Parameter

252 C-Control Pro Mega Series

© 2011 Conrad Electronic

n 16 bit word
base base of the number system
text pointer to destination string
offset offset that is applied to the position where the string is copied
minwidth minimal width of the string

If offset has the value STR_APPEND (0xffff) then the length of the destination string is assumed as
offset. In this case the source string is copied behind the destination string.

6.23.15 Str_Printf Example

// CompactC
void main(void)
{
 char str[80];

 // Integer
 Str_Printf(str, "arg1: %d\r", 1234);
 Msg_WriteText(str);

 // Ouput of integer, floating point, string und hex number
 Str_Printf(str, "arg1: %8d arg2:%10.3f arg3:%20s arg4: %x\r",
 1234, 2.34567, "hello world", 256);
 Msg_WriteText(str);
 Str_Printf(str, "arg1: %u arg2: %.2u\r", 65000, 0xff);
 Msg_WriteText(str);}
}

' Basic
Sub main()
 Dim str(80) As Char

 Str_Printf(str, "arg1: %08d arg2:%10.3f arg3:%20s arg4: %x\r",
 1234, 2.34567, "hello world", 256)
 Msg_WriteText(str)
 Str_Printf(str, "arg1: %u arg2: %.2u\r", 65000, &Hff)
 Msg_WriteText(str)
End Sub

6.24 Threads

Multi Threading

Multi Threading is a so to speak parallel execution of several tasks in a program. One of these tasks
is called “Thread”. When Multi Threading it will rather rapidly be toggled between the various threads
so the impression of simultaneousness is created.

253Libraries

© 2011 Conrad Electronic

The C-Control Pro firmware supports besides the main program (Thread "0") up to 13 additional
threads. With Version 2.12 of the IDE the multithreading changed. Before 2.12 the user could set in
the project options the number of Bytecodes that were executed before there was a thread change.
This behavior was unfair, because some Bytecodes (especially floating point) needed much more
CPU time than other Bytecodes. Now the multithreading scheduler works with time cycles. A user
can assign the number of 10ms cycles a thread has before the next threads get executed.

In multithreading, after a certain number of time cycles the current thread will be set "inactive" and
the next executable thread is searched for. After that the execution of the new thread will be started.
The new thread may again be the same as before depending on how many threads had been
activated or are ready for processing. The main program counts as first thread. Therefore thread "0"
is active at all times even if no threads have explicitly been started.

The priority of threads can be influenced by changing the number of time cycles which one thread is
allowed to execute until the next thread change takes place. The smaller the number of cycles until
the change takes place, the lower the priority of the thread.

Thread Configuration

Before IDE version 2.12 the threads were configured in the project options. That has changed. The
configuration is now placed inside the source code with the new "#thread" keyword. The syntax is:

#thread thread_number, ram_used, number_of_time_cylces

A thread will receive as much space for its local variables as has been assigned to it. The exception
is thread "0" (the main program). This thread will receive the entire memory space that has been left
over by the other threads. The RAM assignment by the "#thread 0" statement for the main thread is
ignored. Therefore it should be planned in advance how much memory space may be needed by
each additional thread.

 The "#thread" statements need not be near the thread functions, but may be anywhere in the
program. If no threads are used, a "#thread 0" command is unnecessary. If you forget to define a
thread, the thread_start is ignored.

Example CompactC:

#thread 0, 0, 20 // main thread with task change every 20 * 10ms = 200ms

#thread 1, 128, 10 // thread 1 with 128 Byte RAM & task change 10 * 10ms = 100ms

#thread 2, 256, 10 // thread 2 with 256 Byte RAM & task change 10 * 10ms = 100ms

Example BASIC (syntax identical to CompactC):

#thread 0, 0, 20 ' main thread with task change every 20 * 10ms = 200ms

#thread 1, 128, 10 ' thread 1 with 128 Byte RAM & task change 10 * 10ms = 100ms

#thread 2, 256, 10 ' thread 2 with 256 Byte RAM & task change 10 * 10ms = 100ms

 Since e. g. Serial_Read will wait until a character arrives from the serial interface, a thread can in
some cases be active longer than the assigned number of time cycles.

 When working with threads Thread_Delay rather than AbsDelay should always be used. If

254 C-Control Pro Mega Series

© 2011 Conrad Electronic

nevertheless e. g. an AbsDelay(1000) is used, the thread will wait for 1000ms even if a smaller
number of time cycles is assigned.

Thread Synchronisation

Sometimes it is necessary for a thread to wait for another thread. This may e. g. be a common
hardware resource which can only execute one thread. Sometimes also critical program areas may
be defined which may only be entered by one thread. This functions are being realized through
instructions Thread_Wait and Thread_Signal.

A thread bound to wait will execute instruction Thread_Wait with a signal number. The condition of
the thread is set on waiting. This means that the thread may be ignored at a possible thread change.
If the other thread has completed its critical work it will send the command Thread_Signal with the
same signal number the first thread had used for its Thread_Wait. The thread condition of the waiting
thread will change from waiting to inactive and will then be considered again at a possible thread
change.

Deadlocks

When all active threads set out for a waiting condition with Thread_Wait then there will be no more
threads which can release the other threads from their waiting conditon. Therefore these
constellations should be avoided when programming.

Table Thread Conditions

Condition Meaning

active The thread is presently executed

inactive Can be activated again after a thread change

sleeping Will after a number of ticks be set to "inactive"
again

waiting The thread awaits a signal

6.24.1 Thread_Cycles

Thread Functions

Syntax

void Thread_Cycles(byte thread,word cycles);

Sub Thread_Cycles(thread As Byte,cycles As Word)

Description

Sets the number of executed bytecode instructions before thread change to the parameter cycles.

 If a thread is freshly started, it will get the cycle count that was defined in the project options. It only

255Libraries

© 2011 Conrad Electronic

makes sense to call Thread_Cylces() after a thread has been started.

Parameter

thread (0-13) number of the thread
cycles cycle count until thread change

6.24.2 Thread_Delay

Thread Functions Example

Syntax

void Thread_Delay(word delay);

Sub Thread_Delay(delay As Word)

Description

With this function a thread will set to "sleep" for a specified time. After this time the thread is again ready for
execution. The waiting period is given in ticks that are created by Timer 2. If Timer 2 is set off or used for
other purposes, the mode of operation of Thread_Delay() is not defined.

 Even if Thread_Delay() looks like any other wait function, you have to keep in mind that the
thread is not automatically executed after the waiting period. The thread is then ready for execution,
but it will not started until the next thread change.

Parameter

delay number of 10ms ticks that should be waited

6.24.3 Thread_Info

Thread Functions

Syntax

word Thread_Info(byte info);

Sub Thread_Info(info As Byte) As Word

Description

The function returns information about the calling thread. The info parameter defines what kind of
information is returned.

Parameter

info values:

256 C-Control Pro Mega Series

© 2011 Conrad Electronic

TI_THREADNUM number of the calling thread
TI_STACKSIZE defined stack size
TI_CYCLES number of cycles before thread change

Return Parameter

info result

6.24.4 Thread_Kill

Thread Functions

Syntax

void Thread_Kill(byte thread);

Sub Thread_Kill(thread As Byte)

Description

Terminates a thread. If 0 is given as thread number, the whole program will be terminated.

Parameter

thread (0-13) thread number

6.24.5 Thread_Lock

Thread Functions

Syntax

void Thread_Lock(byte lock);

Sub Thread_Lock(lock As Byte)

Description

With this function you can inhibit thread changes. This is reasonable if you have a series of port operations
or other hardware actions that should not timely be separated in a thread change.

 If you forget to remove the thread lock, the multithreading is not working.

Parameter

lock if set to 1 thread changes are inhibited, 0 means thread changes are allowed

257Libraries

© 2011 Conrad Electronic

6.24.6 Thread_MemFree

Thread Functions

Syntax

word Thread_MemFree(void);

Sub Thread_MemFree() As Word

Description

Returns the free memory that is available for the calling thread.

Parameter

None

Return Parameter

free memory in bytes

6.24.7 Thread_Resume

Thread Functions

Syntax

void Thread_Resume(byte thread);

Sub Thread_Resume(thread As Byte)

Description

If a thread has the state "waiting" it can be set to "inactive" with this function call. "Inactive" means that a
thread is ready for activation at a thread change.

Parameter

thread (0-13) thread number

6.24.8 Thread_Signal

Thread Functions

Syntax

void Thread_Signal(byte signal);

Sub Thread_Signal(signal As Byte)

258 C-Control Pro Mega Series

© 2011 Conrad Electronic

Description

Has a thread been set to state "waiting" with a call to Thread_Wait() it can be set to "inactive" with a call to
Thread_Signal(). The signal parameter must have the same value as the value that has been used in the
call to Thread_Wait().

Parameter

signal signal value

6.24.9 Thread_Start

Thread Functions Example

Syntax

void Thread_Start(byte thread,dword func);

Sub Thread_Start(Byte thread As Byte,func As ULong)

Description

A new thread gets started. Every function in the program can be used as starting function for the thread.

 If the thread is started inside a function that has parameters defined in the function header, the value
of these parameters is undefined!

Parameter

thread (0-13) thread number
func function name of the function where the thread will be started

6.24.10 Thread_Wait

Thread Functions

Syntax

void Thread_Wait(byte thread,byte signal);

Sub Thread_Wait(thread As Byte,signal As Byte)

Description

The thread gets the state "waiting". The state can be changed back to "inactive" with calls to
Thread_Resume() or Thread_Signal().

259Libraries

© 2011 Conrad Electronic

Parameter

thread (0-13) thread number
signal signal value

6.24.11 Thread Example

// demo program of multithreading

// this program makes no debouncing, therefore a short trigger of the switch

// can lead to more than one string outputs

#thread 0, 0, 10 // main thread with task change every 10 * 10ms = 100ms

#thread 1, 128, 10 // thread 1 with 128 Byte RAM & task change 10 * 10ms = 100ms

void thread1(void)
{

 while(true) // endless loop
 {

 if(!Port_ReadBit(PORT_SW2)) Msg_WriteText(str2); // SW2 is pressed
 }
}

char str1[12],str2[12];

void main(void)
{
 str1="Switch 1";
 str2="Switch 2";

 Port_DataDirBit(PORT_SW1, PORT_IN); // set Pin to input

 Port_DataDirBit(PORT_SW2, PORT_IN); // set Pin to input

 Port_WriteBit(PORT_SW1, 1); // set pull-up

 Port_WriteBit(PORT_SW1, 1); // set pull-up

 Thread_Start(1,thread1); // start new Thread

 while(true) // endless loop
 {

 if(!Port_ReadBit(PORT_SW1)) Msg_WriteText(str1); // SW1 is pressed
 }
}

6.24.12 Thread Example 2

// multithread2: multithreading with Thread_Delay()

// necessary library: IntFunc_Lib.cc

#thread 0, 0, 10 // main thread with task change every 10 * 10ms = 100ms

#thread 1, 128, 10 // thread 1 with 128 Byte RAM & task change 10 * 10ms = 100ms

void thread1(void)

260 C-Control Pro Mega Series

© 2011 Conrad Electronic

{
 while(true)
 {
 Msg_WriteText(str2); Thread_Delay(200);

 } // "Thread2" is displayed

} // after that the thread

 // sleeps for 200ms

char str1[12],str2[12]; // global variable declaration

//--

// main program

//
void main(void)
{

 str1="Thread1"; // variable declaration

 str2="Thread2"; // variable declaration

 Thread_Start(1,thread1); // start new thread

 while(true) // endless loop
 {
 Thread_Delay(100); Msg_WriteText(str1);

 } // the thread sleeps for 100ms

} // after that "Thread1" is displayed

6.25 Timer

In C-Control Pro Mega 32 there are two, in Mega128 are three independent timers available. These
are Timer_0 with 8 bit and Timer_1 with 16 bit (Timer_3 with 16 bit for Mega128 only). Timer_2 is
used by the firmware as an internal time base and is set firm to a 10ms interrupt. These internal
timers can be utilized for a multitude of tasks:

Event Counter
Frequency Generation
Pulse Width Modulation
Timer Functions
Pulse & Period Measurement
Frequency Measurement

6.25.1 Event Counter

Here are two examples for how a Timer can be used for an Event Counter:

Timer0 (8 Bit)

// Example: Pulse Counting with CNT0

Timer_T0CNT();
pulse(n); // generate n Pulses

261Libraries

© 2011 Conrad Electronic

count=Timer_T0GetCNT();

 With Mega128 for reasons of the hardware the use of Timer_0 as counter is not possible!

Timer1 (16 Bit)

// Example: Pulse Counting with CNT1

Timer_T1CNT();
pulse(n); // generate n Pulses

count=Timer_T1GetCNT();

6.25.2 Frequency Generation

To generate frequencies Timer_0, Timer_1 and Timer_3 can be utilized as follows:

Timer0 (8 Bit)

1. Example:

// Square Wave Signal with 10*1,085 µs = 10,85 µs Period Duration
Timer_T0FRQ(10, PS0_8)

2. Example: Pulsed Frequency Blocks (Project FRQ0)

void main(void)
{

 int delval; // Variable for the On/Off Time

 delval=200; // Value Assignment for Variable delval

 // Frequency: Period=138,9 µs*100=13,9 ms,Frequency=72Hz

 Timer_T0FRQ(100,PS0_1024); // Timer is set to Frequency

 while (1)
 {

 AbsDelay(delval); // Time Delay by 200ms

 Timer_T0Stop(); // Timer is stopped

 AbsDelay(delval); // Time Delay by 200ms

 Timer_T0Start(PS0_1024); // Timer will be switched on with

 // Timer Prescaler PS0_1024.
 }
}

 The program will on Mega128 not work in USB mode since output PB4 is in conjunction with the USB
interface used on the Application Board.

Timer1 (16 Bit)

Example: Frequency Generation with 125 * 4,34 µs = 1085µs Period

262 C-Control Pro Mega Series

© 2011 Conrad Electronic

Timer_T1FRQ(125,PS_64);

Timer3 (16 Bit) (only Mega128)

Example: Frequency Generation with 10*1,085 µs =10,85 µs Period and 2*1,085µs =2,17 µs Phase Shift

Timer_T3FRQX(10,2,PS_8);

6.25.3 Frequency Measurement

Timer_1 (16Bit) and Timer_3 (16Bit) (only Mega128) can be used for direct measurement of a
frequency. The pulses per second are being counted, the result is then delivered in Hertz units. The
maximum frequency is 64kHz and is yielded by the 16 bit counter. An example for this kind of
frequency measurement can be found under "Demo Programs/FreqMeasurement". By shortening the
measuring time also higher frequencies can be measured. The result has then to be re-calculated
accordingly.

6.25.4 Pulse Width Modulation

There are two independent timers available for pulse width modulation. These are Timer_0 with 8 bit and
Timer_1 with 16 bit. By use of a pulse width modulation Digital-Analog-Converters can be realized very
easily. On the Mega128 Timer_3 can be used additionally.

Timer0 (8 Bit)

Example: Pulse Width Modulation with 138,9 µs Period and 5,42 µs Pulse Width, changed to 10,84 µs
Pulse Width

// Pulse: 10*542,5 ns = 5,42 µs, Period: 256*542,5 ns = 138,9 µs
Timer_T0PWM(10,PS0_8);

Timer_T0PW(20); // Pulse: 20*542,5 ns = 10,84 µs

Timer1 (16 Bit)

Example: Pulse Width Modulation with 6,4 ms Period and 1,28 ms Pulse Width Channel A and 640 µs
Pulse Width Channel B

Timer_T1PWMX(10,20,10,PS_1024); // Period: 100*69,44 µs = 6,94 ms

 // PulseA: 20*69,44 µs = 1,389 ms

 // PulseB: 10*69,44 µs = 694,4 µs

 When using the PWM timer functions a value of zero for the duty parameter is not allowed,

and will not turn the PIN off. To produce a low signal, the timer must be turned off (Timer_Disable)
and the PIN should be switched to output. If a PWM function is used, that generates multiple PWM
signals, then a PWM function should be called (e.g. Timer_T1PWM), that will not include the PIN,
that should be switched to low.

263Libraries

© 2011 Conrad Electronic

An example:

 while(1)
 {
 Timer_T1PWMX(255,128,128,PS_8);
 Timer_T1PWA(128);
 Timer_T1PWB(128);

 AbsDelay(1000);

 // set OC1B off
 Timer_Disable(1);
 Timer_T1PWM(255,128,PS_8);
 Port_DataDirBit(14,1);
 Port_WriteBit(14,0);
 }

6.25.5 Pulse & Period Measurement

By use of Timer_1 or Timer_3 (only Mega128) pulse widths and signal periods can be measured.
Here by use of the Input Capture Function (specific register of the Controller) the time between two
signal slopes is measured. This function utilizes the Capture-Interrupt (INT_TIM1CAPT). A pulse is
measured between a rising and the next falling signal edge. A period is measured between two rising
signal edges. Because of the Input Capture Function program delay times will not as an inaccuracy
be entered into the measuring result. With a programmable prescaler the resolution of Timer_1 can
be set. Prescaler see Table.

Example: Activate Pulse Width Measurement (Project PMeasurement) 434 µs (100 x 4,34 µs, see Table
)

word PM_Value;

void Timer1_ISR(void)
{
 int irqcnt;

 PM_Value=Timer_T1GetPM();
 irqcnt=Irq_GetCount(INT_TIM1CAPT);
}

void main(void)
{
 byte n;

 // Define Interrupt Service Routine
 Irq_SetVect(INT_TIM1CAPT,Timer1_ISR);

 Timer_T0PWM(100,PS0_64); // Start Pulse Generator Timer 0

 // Measurement starts here

264 C-Control Pro Mega Series

© 2011 Conrad Electronic

 // Output Timer0 OC0(PortB.3) connect to ICP(input capture pin, PortD.6)

 PM_Value=0;

 // Set mode to Pulse Width Measurement and determine prescaler
 Timer_T1PM(0,PS_64);

 while(PM_Value==0); // Measure Pulse Width or Period

 Msg_WriteHex(PM_Value); // Output Measuring Value
}

 For reason of better survey only a simplified version is shown here. Because of a collision on Pin
B.4 Timer_0 is used for pulse generation with Mega128. The entire program can be found in directory
PW_Measurement.

6.25.6 Timer Functions

In C-Control Pro Mega 32 there are two, in Mega128 three independent Timer available. These are
Timer_0 with 8 bit and Timer_1 with 16 bit (Timer_3 with 16 bit for Mega128 only). The timer have a
programmable prescaler (see Table). After the defined period the timer will trigger an interrupt. An
interrupt routine can then be used to execute specific actions.

Timer_T0Time (8 Bit)

Example: Timer0: Switch output on with a delay of 6,94 ms (100x 69,44 µs, see Table)

void Timer0_ISR(void)
{
 int irqcnt;

 Port_WriteBit(0,1);

 Timer_T0Stop() ; // stop Timer0
 irqcnt=Irq_GetCount(INT_TIM0COMP);
}

void main(void)
{

 Port_DataDirBit(0,0); // PortA.0 Output

 Port_WriteBit(0,0); // PortA.0 Output=0

 Irq_SetVect(INT_TIM0COMP,Timer0_ISR);// define Interrupt Service Routine

 Timer_T0Time(100,PS0_1024); // set time and start Timer0

 // other program code....
}

265Libraries

© 2011 Conrad Electronic

6.25.7 Timer_Disable

Timer Functions

Syntax

void Timer_Disable(byte timer);

Sub Timer_Disable(timer As Byte)

Description

This function disables the specified timer. Timer functions occupy I/O ports. If a timer is not needed and
the corresponding I/O ports are used otherwise, the timer must be disabled.

Parameter

0 = Timer_0
1 = Timer_1
3 = Timer_3 (only Mega128)

6.25.8 Timer_T0CNT

Timer Functions

Syntax

void Timer_T0CNT(void);

Sub Timer_T0CNT()

Description

These function initializes Counter0. Counter0 gets incremented at every positive signal edge at Input
Mega32:T0 (PIN1).

 Due to hardware reasons it is not possible to use Timer_0 as a counter in the Mega128!

Parameter

None

6.25.9 Timer_T0FRQ

Timer Functions

Syntax

void Timer_T0FRQ(byte period,byte PS);

Sub Timer_T0FRQ(period As Byte,PS As Byte)

266 C-Control Pro Mega Series

© 2011 Conrad Electronic

Description

This function initializes Timer0 for frequency generation. Parameters are period duration and prescaler,
see table. The output signal is generated at Mega32: PortB.3 (PIN4), Mega128: PortB.4 (X1_4). The
frequency generation is started automatically. There is a extended prescaler definition for the Mega128,
see table.

Parameter

period period duration
PS prescaler

Table prescaler:

Prescaler Tickduration Mega32

PS0_1 (1) 135,6 ns

PS0_8 (2) 1,085 µs

PS0_64 (3) 8,681 µs

PS0_256 (4) 34,72 µs

PS0_1024 (5) 138,9 µs

Prescaler Tickduration Mega128 Tickduration Mega128 CAN

PS0_1 (1) 135,6 ns 125 ns
PS0_8 (2) 1,085 µs 1 µs
PS0_32 (3) 4,340 µs 4 µs
PS0_64 (4) 8,681 µs 8µs
PS0_128 (5) 17,36 µs 16 µs
PS0_256 (6) 34,72 µs 32 µs
PS0_1024 (7) 138,9 µs 128 µs

6.25.10 Timer_T0GetCNT

Timer Functions

Syntax

byte Timer_T0GetCNT(void);

Sub Timer_T0GetCNT() As Byte

Description

The value of Counter0 is read. If there was an overflow a value of 0xff is returned.

 Due to hardware reasons it is not possible to use Timer_0 as a counter in the Mega128!

267Libraries

© 2011 Conrad Electronic

Return Parameter

counter value

6.25.11 Timer_T0PW

Timer Functions

Syntax

void Timer_T0PW(byte PW);

Sub Timer_T0PW(PW As Byte)

Description

This function sets a new pulse width for Timer0 without changing the prescaler.

 For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

PW pulse width

6.25.12 Timer_T0PWM

Timer Functions

Syntax

void Timer_T0PWM(byte PW,byte PS);

Sub Timer_T0PWM(PW As Byte,PS As Byte)

Description

This function initializes Timer0 with given prescaler and pulse width, see table. The output signal is
generated at Mega32: PortB.3 (PIN4), Mega128: PortB.4 (X1_4). There is an extended prescaler definition
for the Mega128, see table.

Parameter

 For the pulse width parameters do not use the value zero. See Pulse Width Modulation

PW pulse width
PS prescaler

Table prescaler:

268 C-Control Pro Mega Series

© 2011 Conrad Electronic

Prescaler Tickduration Mega32

PS0_1 (1) 67,8 ns
PS0_8 (2) 542,5 ns
PS0_64 (3) 4,34 µs
PS0_256 (4) 17,36 µs
PS0_1024 (5) 69,44 µs

Prescaler Tickduration Mega128 Tickduration Mega128 CAN

PS0_1 (1) 67,8 ns 62,5 ns
PS0_8 (2) 542,5 ns 500 ns
PS0_32 (3) 2,17 µs 2 µs
PS0_64 (4) 4,34 µs 4 µs
PS0_128 (5) 8,68 µs 8 µs
PS0_256 (6) 17,36 µs 16 µs
PS0_1024 (7) 69,44 µs 64 µs

6.25.13 Timer_T0Start

Timer Functions

Syntax

void Timer_T0Start(byte prescaler);

Sub Timer_T0Start(prescaler As Byte)

Description

The timer continues with the already set parameters. The prescaler must be given again.

Parameter

prescaler prescaler (see table)

6.25.14 Timer_T0Stop

Timer Functions

Syntax

void Timer_T0Stop(void);

Sub Timer_T0Stop()

Description

269Libraries

© 2011 Conrad Electronic

The frequency generation gets stopped. The output signal can be 0 or 1, dependent on the last state. Only
the clock generation is stopped, all other settings stay the same.

Parameter

None

6.25.15 Timer_T0Time

Timer Functions

Syntax

void Timer_T0Time(byte Time,byte PS);

Sub Timer_T0Time(Time As Byte,PS As Byte)

Description

This function initializes Timer_0 with a prescaler and a timer interval value, see table. After the timing
interval is expired The Timer_0 Interrupt (INT_TIM0COMP) is triggered. There is an extended prescaler
definition for the Mega128, see table.

Parameter

Time time period after that the interrupt is triggered
PS prescaler

Table prescaler:

Prescaler Tickduration Mega32

PS0_1 (1) 67,8 ns

PS0_8 (2) 542,5 ns

PS0_64 (3) 4,34 µs

PS0_256 (4) 17,36 µs

PS0_1024 (5) 69,44 µs

Prescaler Tickduration Mega128 Tickduration Mega128 CAN

PS0_1 (1) 67,8 ns 62,5 ns
PS0_8 (2) 542,5 ns 500 ns
PS0_32 (3) 2,17 µs 2 µs
PS0_64 (4) 4,34 µs 4 µs
PS0_128 (5) 8,68 µs 8 µs
PS0_256 (6) 17,36 µs 16 µs
PS0_1024 (7) 69,44 µs 64 µs

270 C-Control Pro Mega Series

© 2011 Conrad Electronic

6.25.16 Timer_T1CNT

Timer Functions

Syntax

void Timer_T1CNT(void);

Sub Timer_T1CNT()

Description

These function initializes Counter1. Counter1 gets incremented at every positive signal edge at Input
Mega32: PortB.1 (PIN2) Mega128: PortD.6 (X2_15).

Parameter

None

6.25.17 Timer_T1CNT_Int

Timer Functions

Syntax

void Timer_T1CNT_Int(word limit);

Sub Timer_T1CNT_Int(limit As Word)

Description

These function initializes Counter1. Counter1 gets incremented at every positive signal edge at Input
Mega32: PortB.1 (PIN2) Mega128: PortD.6 (X2_15). After the limit is reached an interrupt ("Timer1
CompareA" - define: INT_TIM1CMPA) is triggered. An appropriate Interrupt Service Routine must be
specified.

Parameter

limit

6.25.18 Timer_T1FRQ

Timer Functions

Syntax

void Timer_T1FRQ(word period,byte PS);

Sub Timer_T1FRQ(period As Word,PS As Byte)

271Libraries

© 2011 Conrad Electronic

Description

This function initializes Timer1 for frequency generation. Parameters are period duration and prescaler,
see table. The output signal is generated at Mega32: PortD.5 (PIN19). Mega128: PortB.5 (X1_3). The
frequency generation is started automatically. There is an extended prescaler definition for the Mega128,
see table.

Parameter

period period duration
PS prescaler

Table prescaler:

Prescaler Tickduration Mega32 + Mega128 Tickduration Mega128 CAN

PS_1 (1) 135,6 ns 125 ns
PS_8 (2) 1,085 µs 1 µs
PS_64 (3) 8,681 µs 8 µs
PS_256 (4) 34,72 µs 32 µs
PS_1024 (5) 138,9 µs 128 µs

6.25.19 Timer_T1FRQX

Timer Functions

Syntax

void Timer_T1FRQX(word period,word skew,byte PS);

Sub Timer_T1FRQX(period As Word,skew As Word,PS As Byte)

Description

This function initializes Timer1 for frequency generation. Parameters are period duration, prescaler and
 phase shift,see table. The output signal is generated at Mega32: PortD.5 (PIN19). Mega128: PortB.5
(X1_3). The frequency generation is started automatically. There is an extended prescaler definition for the
Mega128, see table. The phase shift must be smaller than half the period.

Parameter

period period duration
skew phase shift
PS prescaler (table prescaler)

6.25.20 Timer_T1GetCNT

Timer Functions

Syntax

272 C-Control Pro Mega Series

© 2011 Conrad Electronic

word Timer_T1GetCNT(void);

Sub Timer_T1GetCNT() As Word

Description

The value of Counter1 is read. If there was an overflow a value of 0xffff is returned.

Return Parameter

counter value

6.25.21 Timer_T1GetPM

Timer Functions

Syntax

word Timer_T1GetPM(void);

Sub Timer_T1GetPM() As Word

Description

Returns the result of the measurement.

Parameter

None

Return Parameter

result of measurement

 To calculate the correct value, the 16bit result is multiplied with the entry of the prescaler Table
that was passed in the call to Timer_T1PM.

6.25.22 Timer_T1PWA

Timer Functions

Syntax

void Timer_T1PWA(word PW0);

Sub Timer_T1PWA(PW0 As Word)

Description

273Libraries

© 2011 Conrad Electronic

This function sets a new pulse width (Channel A) for Timer1 without changing the prescaler.

 For the pulse-width parameters do not use the value zero. See Pulse Width Modulation

Parameter

PW0 pulse width

6.25.23 Timer_T1PM

Timer Functions

Syntax

void Timer_T1PM(byte Mode,byte PS);

void Timer_T1PM(Mode As Byte,PS As Byte)

Description

This function defines if pulse width measurement or period measurement should be done. Then it
initializes Timer_1 and sets the prescaler.

Parameter

Mode 0 = pulse width measurement, 1 = period measurement
PS prescaler

Table prescaler:

Prescaler Tickduration Mega32 + Mega128 Tickduration Mega128 CAN

PS_1 (1) 67,8 ns 62,5 ns
PS_8 (2) 542,5 ns 500 ns
PS_64 (3) 4,34 µs 4 µs
PS_256 (4) 17,36 µs 16 µs
PS_1024 (5) 69,44 µs 64 µs

6.25.24 Timer_T1PWB

Timer Functions

Syntax

void Timer_T1PWB(word PW1);

Sub Timer_T1PWB(PW1 As Word)

Description

274 C-Control Pro Mega Series

© 2011 Conrad Electronic

This function sets a new pulse width (Channel B) for Timer1 without changing the prescaler.

 For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

PW1 pulse width

6.25.25 Timer_T1PWM

Timer Functions

Syntax

void Timer_T1PWM(word period,word PW0,byte PS);

Sub Timer_T1PWM(period As Word,PW0 As Word,PS As Byte)

Description

This function initializes Timer_1 with given period duration, pulse width and prescaler, see table. The
output signal is generated at Mega32: PortD.5 (PIN19), Mega128: PortB.5 (X1_3). There is an extended
prescaler definition for the Mega128, see table.

 For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

period period duration
PW0 pulse width
PS prescaler

Table prescaler:

Prescaler Tickduration Mega32 + Mega128 Tickduration Mega128 CAN

PS_1 (1) 67,8 ns 62,5 ns
PS_8 (2) 542,5 ns 500 ns
PS_64 (3) 4,34 µs 4 µs
PS_256 (4) 17,36 µs 16 µs
PS_1024 (5) 69,44 µs 64 µs

6.25.26 Timer_T1PWMX

Timer Functions

Syntax

void Timer_T1PWMX(word period,word PW0,word PW1,byte PS);

275Libraries

© 2011 Conrad Electronic

Sub Timer_T1PWMX(period As Word,PW0 As Word,PW1 As Word,PS As Byte)

Description

This function initializes Timer_1 with given period duration, prescaler, pulse width for channel A and B. The
output signal is generated at
Mega32: PortD.4 (PIN18) and PortD.5 (PIN19). Mega128: PortB.5 (X1_3) and PortB.6 (X1_2).

 For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

period period duration
PW0 pulse width channel A
PW1 pulse width channel B
PS prescaler (see table prescaler)

6.25.27 Timer_T1PWMY

Timer Functions

Syntax

void Timer_T1PWMY(word period,word PW0,word PW1,word PW2,byte PS);

Sub Timer_T1PWMY(period As Word,PW0 As Word,PW1 As Word,PW2 As Word,PS
As Byte)

Description

This function initializes Timer_1 with given period duration, prescaler, pulse width for channel A, B and C.
The output signal is generated at
PortB.5 (X1_3) , PortB.6 (X1_2) and PortB.7 (X1_1).

 For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

period period duration
PW0 pulse width channel A
PW1 pulse width channel B
PW2 pulse width channel C
PS prescaler (see table prescaler)

276 C-Control Pro Mega Series

© 2011 Conrad Electronic

6.25.28 Timer_T1Start

Timer Functions

Syntax

void Timer_T1Start(byte prescaler);

Sub Timer_T1Start(prescaler As Byte)

Description

The timer continues with the already set parameters. The prescaler must be given again.

Parameter

prescaler prescaler (see table)

6.25.29 Timer_T1Stop

Timer Functions

Syntax

void Timer_T1Stop(void);

Sub Timer_T1Stop()

Description

The frequency generation gets stopped. The output signal can be 0 or 1, dependent on the last state. Only
the clock generation is stopped, all other settings stay the same.

Parameter

None

6.25.30 Timer_T1Time

Timer Functions

Syntax

void Timer_T1Time(word Time,byte PS);

Sub Timer_T1Time(Time As Word,PS As Byte)

Description

277Libraries

© 2011 Conrad Electronic

This function initializes Timer_1 with a prescaler and a timer interval value (16bit), see table. After the
timing interval is expired Timer_1 Interrupt (INT_TIM1CMPA) is triggered. There is an extended prescaler
definition for the Mega128, see table.

Parameter

Time time period after that the interrupt is triggered
PS prescaler

Table prescaler:

Prescaler Tickduration Mega32 + Mega128 Tickduration Mega128 CAN

PS_1 (1) 67,8 ns 62,5 ns

PS_8 (2) 542,5 ns 500 ns

PS_64 (3) 4,34 µs 4 µs

PS_256 (4) 17,36 µs 16 µs

PS_1024 (5) 69,44 µs 64 µs

6.25.31 Timer_T3CNT

Timer Functions

Syntax

void Timer_T3CNT(void);

Sub Timer_T3CNT()

Description

These function initializes Counter3. Counter3 gets incremented at every positive signal edge at Input
PortE.6 (X1_10)

Parameter

None

6.25.32 Timer_T3CNT_Int

Timer Functions

Syntax

void Timer_T3CNT_Int(word limit);

278 C-Control Pro Mega Series

© 2011 Conrad Electronic

Sub Timer_T3CNT_Int(limit As Word)

Description

These function initializes Counter_3. Counter_3 gets incremented at every positive signal edge at Input
PortE.6 (X1_10). After the limit is reached an interrupt ("Timer3 CompareA" - define: INT_TIM3CMPA) is
triggered. An appropriate Interrupt Service Routine must be specified.

Parameter

limit

6.25.33 Timer_T3FRQ

Timer Functions

Syntax

void Timer_T3FRQ(word period,byte PS);

Sub Timer_T3FRQ(period As Word,PS As Byte)

Description

This function initializes Timer3 for frequency generation. Parameters are period duration and prescaler,
see table. The output signal is generated at PortE.3 (X1_13). The frequency generation is started
automatically..

Parameter

period period duration
PS prescaler

Table prescaler:

Prescaler Tickduration Mega128 Tickduration Mega128 CAN

PS_1 (1) 135,6 ns 125 ns

PS_8 (2) 1,085 µs 1 µs

PS_64 (3) 8,681 µs 8 µs

PS_256 (4) 34,72 µs 32 µs

PS_1024 (5) 138,9 µs 128 µs

279Libraries

© 2011 Conrad Electronic

6.25.34 Timer_T3FRQX

Timer Functions

Syntax

void Timer_T3FRQX(word period,word skew,byte PS);

Sub Timer_T3FRQX(period As Word,skew As Word,PS As Byte)

Description

This function initializes Timer3 for frequency generation. Parameters are period duration, prescaler and
 phase shift,see table. The output signal is generated at PortE.3 (X1_13) und PortE.4 (X1_12). The
frequency generation is started automatically. There is an extended prescaler definition for the Mega128,
see table. The phase shift must be smaller than half the period.

Parameter

period period duration
skew phase shift
PS prescaler (table prescaler)

6.25.35 Timer_T3GetCNT

Timer Functions

Syntax

word Timer_T3GetCNT(void);

Sub Timer_T3GetCNT() As Word

Description

The value of Counter1 is read. If there was an overflow a value of 0xffff is returned.

Return Parameter

counter value

6.25.36 Timer_T3GetPM

Timer Functions

Syntax

word Timer_T3GetPM(void);

Sub Timer_T3GetPM() As Word

280 C-Control Pro Mega Series

© 2011 Conrad Electronic

Description

Returns the result of the measurement.

Parameter

None

Return Parameter

result of measurement

 To calculate the correct value, the 16bit result is multiplied with the entry of the prescaler Table
that was passed in the call to Timer_T3PM.

6.25.37 Timer_T3PWA

Timer Functions

Syntax

void Timer_T3PWA(word PW0);

Sub Timer_T3PWA(PW0 As Word)

Description

This function sets a new pulse width (Channel A) for Timer3 without changing the prescaler.

 For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

PW0 pulse width

6.25.38 Timer_T3PM

Timer Functions

Syntax

void Timer_T3PM(byte Mode,byte PS);

void Timer_T3PM(Mode As Byte,PS As Byte)

Description

This function defines if pulse width measurement or period measurement should be done. Then it

281Libraries

© 2011 Conrad Electronic

initializes Timer_3 and sets the prescaler.

Parameter

Mode 0 = pulse width measurement, 1 = period measurement
PS prescaler

Table prescaler:

Prescaler Tickduration Mega128 Tickduration Mega128 CAN

PS_1 (1) 67,8 ns 62,5 ns

PS_8 (2) 542,5 ns 500 ns

PS_64 (3) 4,34 µs 4 µs

PS_256 (4) 17,36 µs 16 µs

PS_1024 (5) 69,44 µs 64 µs

6.25.39 Timer_T3PWB

Timer Functions

Syntax

void Timer_T3PWB(word PW1);

Sub Timer_T3PWB(PW1 As Word)

Description

This function sets a new pulse width (Channel B) for Timer3 without changing the prescaler.

 For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

PW1 pulse width

6.25.40 Timer_T3PWM

Timer Functions

Syntax

void Timer_T3PWM(word period,word PW0,byte PS);

Sub Timer_T3PWM(period As Word,PW0 As Word,PS As Byte)

282 C-Control Pro Mega Series

© 2011 Conrad Electronic

Description

This function initializes Timer_3 with given period duration, pulse width and prescaler, see table. The
output signal is generated at PortE.3 (X1_13).

 For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

period period duration
PW0 pulse width
PS prescaler

Table prescaler:

Prescaler Tickduration Mega128 Tickduration Mega128 CAN

PS_1 (1) 67,8 ns 62,5 ns

PS_8 (2) 542,5 ns 500 ns

PS_64 (3) 4,34 µs 4 µs

PS_256 (4) 17,36 µs 16 µs

PS_1024 (5) 69,44 µs 64 µs

6.25.41 Timer_T3PWMX

Timer Functions

Syntax

void Timer_T3PWMX(word period,word PW0,word PW1,byte PS);

Sub Timer_T3PWMX(period As Word,PW0 As Word,PW1 As Word,PS As Byte)

Description

This function initializes Timer_3 with given period duration, prescaler, pulse width for channel A and B. The
output signal is generated at
 PortE.3 (X1_13) and PortE.4 (X1_12).

 For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

period period duration
PW0 pulse width channel A
PW1 pulse width channel B
PS prescaler (see table prescaler)

283Libraries

© 2011 Conrad Electronic

6.25.42 Timer_T3PWMY

Timer Functions

Syntax

void Timer_T3PWMY(word period,word PW0,word PW1,word PW2,byte PS);

Sub Timer_T3PWMY(period As Word,PW0 As Word,PW1 As Word,PW2 As Word,PS
As Byte)

Description

This function initializes Timer_3 with given period duration, prescaler, pulse width for channel A, B and C.
The output signal is generated at
PortE.3 (X1_13), PortE.4 (X1_12) and PortE.5 (X1_11).

 For the pulse width parameters do not use the value zero. See Pulse Width Modulation

Parameter

period period duration
PW0 pulse width channel A
PW1 pulse width channel B
PW2 pulse width channel C
PS prescaler (see table prescaler)

6.25.43 Timer_T3Start

Timer Functions

Syntax

void Timer_T3Start(byte prescaler);

Sub Timer_T3Start(prescaler As Byte)

Description

The timer continues with the already set parameters. The prescaler must be given again.

Parameter

prescaler prescaler (see table)

284 C-Control Pro Mega Series

© 2011 Conrad Electronic

6.25.44 Timer_T3Stop

Timer Functions

Syntax

void Timer_T3Stop(void);

Sub Timer_T3Stop()

Description

The frequency generation gets stopped. The output signal can be 0 or 1, dependent on the last state. Only
the clock generation is stopped, all other settings stay the same.

Parameter

None

6.25.45 Timer_T3Time

Timer Functions

Syntax

void Timer_T3Time(word Time,byte PS);

Sub Timer_T3Time(Time As Word,PS As Byte)

Description

This function initializes Timer_3 with a prescaler and a timer interval value (16bit), see table. After the
timing interval is expired Timer_3 Interrupt (INT_TIM3CMPA) is triggered.

Parameter

Time time period after that the interrupt is triggered
PS prescaler

Table prescaler:

Prescaler Tickduration Mega128 Tickduration Mega128 CAN

PS_1 (1) 67,8 ns 62,5 ns
PS_8 (2) 542,5 ns 500 ns
PS_64 (3) 4,34 µs 4 µs
PS_256 (4) 17,36 µs 16 µs
PS_1024 (5) 69,44 µs 64 µs

285Libraries

© 2011 Conrad Electronic

6.25.46 Timer_TickCount

Timer Functions

Syntax

word Timer_TickCount(void);

Sub Timer_TickCount() As Word

Description

Measures the number of 10ms ticks between two calls of Timer_TickCount(). Ignore the return value of
the first call to Timer_TickCount(). If the delay between the two calls is greater than 655.36 seconds,
the result is undefined.

Parameter

None

Return Parameter

time interval expressed in 10ms ticks

Example

void main(void)
{
 word time;
 Timer_TickCount();

 AbsDelay(500); // wait 500 ms

 time=Timer_TickCount(); // the value should be 50
}

Part

7

287FAQ

© 2011 Conrad Electronic

FAQ7

Problems

1. No USB connection existing to the Application Board.

Has the FTDI USB driver been loaded onto the PC? Or does “Unknown Device” appear in the
Hardware Manager, when the USB connector is plugged in?
Has the correct communication port been set in Options->IDE->Interfaces?
Are the ports M32:B.4-B.7,A.6-A.7 resp. M128:B.0-B.4,E.5 erroneously being used in the software
(see pin assignment of M32 and M128)? Are the jumpers on the Application Board set to these
ports?
A signal on M32:PortD.2 resp. M128:PortE.4 (SW1) during startup will activate the serial
Bootloader.
(Mega128 only) Is Port.G4 (LED2) on Low during Reset? See SPI Switch Off in chapter
"Firmware".

2. The serial interface does not issue any characters or does not receive any characters.

Are the Ports D.0-D.1 erroneously used in the software (see pin assignment of M32 and M128)?
Are the jumpers on the Application Board set to these ports?

3. The Application Board does not react to any commands when serially connected.

In order to get the Bootloader into the serial mode the button SW1 must be pressed during startup
of the Application Board (observe jumper for SW1). For the serial mode M32:PortD.2 resp. M128:
PortE.4 (SW1) can also be fixed to GND level.

4. The Hardware Application does not start by itself (Autostart Behaviour).

A signal on the SPI interface during startup may activate USB communication.
A signal on M32:PortD.2 resp. M128:PortE.4 (SW1) during startup may activate the serial
Bootloader.

5. The key assignment of the editor "xyz" has been set but some keyboard commands do not
function.

The possibility to switch on the key assignment of a specific editor in the IDE is only an
approximation. Sometimes it is too expensive to support the corresponding functions in a “foreign”
editor, some other time the keyboard commands can collide with the keyboard shortcuts in the
IDE.

6. The spelling check does not function.

Is the spelling check switched on in Options->Editor?
The spelling check does only display spelling errors in the commentaries. The check of any other
area would not make sense.

288 C-Control Pro Mega Series

© 2011 Conrad Electronic

7. Where can be determined whether the new project is a BASIC or C project?

There is no difference in project type. The source text files in a project determine which
programming language is being used. Files with the extension *.cc will run in a CompactC
context, Files with the extension *.cbas will be translated into BASIC. Also C and BASIC can be
combined in a project.

8. I am using an LCD other than the one shipped with the product, but am using the same Controller.
The cursor positions do not work correctly.

The Controller can display 4 lines at 32 characters each. The beginnings of the lines are stored
transposed in memory following the scheme below:

Value of pos Position in the display

0x00-0x1f 0-31in the line 1

0x40-0x5f 0-31in the line 2

0x20-0x3f 0-31in the line 3

0x60-0x6f 0-31in the line 4

9. How much RAM do I have for my programs?

There are 930 bytes left for own programs on the Mega32, on the Mega128 remain 2494 bytes.
Interpreter and Debugger are using buffer for interrupt driven I/O, and 256 bytes for the data stack.
Beside this resources, there are some internal tables, that are needed for interrupt handling and
multitasking. Additionally some RAM Variables are used from library functions.

10. Where is the second serial interface on the Mega128 Application Board?

See J4 chapter Jumper Application Board M128.

11. I need no USB connection to the application board, how can I reclaim the reserved ports for
USB?

The USB interface is wired to the C-Control module over the SPI interface. The SPI interface can
be disabled with SPI_Disable(). Do not forget to remove the jumper that connects the SPI with the
Mega8 (USB interface) on the application board.

12. Where do I have the supply voltage on the breadboard?

If you turn the application board to a position where the interface connectors (USB and serial)
show to the upper side, the leftmost column on the breadboard is GND and the rightmost column
is VCC. You can see it clearly, when you take a look of the backside of the board.

13. I need more ports for my hardware application. Many ports are used by other functions.

289FAQ

© 2011 Conrad Electronic

Take a look at the Pin Assignment of M32 and M128. You can use all ports that have no special
functionality (SPI, RS232, LCD, Keyboard etc.) that is needed for your application. Do not forget
to remove the jumper that connects the port pins to the application board. Otherwise the behaviour
can be undetermined.

14. How can I switch on the Pull-Up resistor of a port?

First switch the port to input with PortDataDir() (or PortDataDirBit()), then use PortWrite() (or
PortWriteBit()) to write a "1" into the port.

15. Where are the demo programs located?

Due to Vista Compatibility the demo programs are installed to "\Documents and Settings\All
Users\Documents" (XP and earlier) or to "\Users\Public\Public Documents" (Vista) directory.
 When replacing an old installation, the old "Demos" directory is deleted. Therefore please create
own programs outside of the "C-Control Pro Demos" directory.

16. Can I program the C-Control Pro Module in Linux?

There is no native IDE for Linux, but customer had successfully started the IDE under Wine und
programmed the module in serial mode.

17. Is it possible to develop for C-Control Pro with other Compilers?

There are many developing systems for the Atmel Mega CPU. Some of these Compilers are
commercial, others a free. A good example of a free development system is the GNU C-Compiler.
You can transfer programs, that you wrote with the GNU C-Compiler, to the Atmel Mega CPU with
a AVR ISP programmer. But once you overwrote the installed bootloader, there is no way back,
you cannot longer use the C-Control Pro software.

C-Control Pro Mega Series290

© 2011 Conrad Electronic

Index

- - -
-- 109, 131

- # -
#define 97

#endif 97

#ifdef 97

#include 97

#pragma 99

- + -
++ 109, 131

- A -
AbsDelay 153

AComp 154

acos 195

Actualize Variable 82

ADC_Disable 157

ADC_Read 157

ADC_ReadInt 158

ADC_Set 158

ADC_SetInt 159

ADC_StartInt 160

Addition 108, 130

Analog-Comparator 154, 155

And 109, 130

arc cosine 195

arc sine 195

arc tangent 196

Arithmetic Operators 108, 130

Array 104, 125

Array Window 81

ASCII 146

asin 195

Assembler 142

Assembler Compendium 146

Assembler Data Access 144

Assembler Examples 142

atan 196

Atmel Register 175, 176

Auto Actualize 82

Autostart 17, 77

- B -
baud rate 92

Bit inversion 109, 130

Bit Operators 109, 130

Bitshift Operators 109, 131

Bootloader 17

break 111, 112, 114, 116

Breakpoints 80

Byte 103, 125

- C -
CAN Bus 160

CAN Examples 162

CAN_Exit 163

CAN_GetInfo 163

CAN_Init 164

CAN_MObSend 166

CAN_Receive 165

CAN_SetMOb 166

Cascade 93

Case 114, 136

ceil 196

Change Variable 82

Char 103, 125

Clock_GetVal 167

Clock_SetDate 168

Clock_SetTime 168

COM Port 92

Comments 101, 123

Communication 90

CompactC 100

Comparison Operators 110, 131

compile 65

compile projects 65

Compiler Presetting 88

Component Parts Plan Mega128 Appl. Board 57

Component Parts Plan Mega32 Appl. Board 48

Index 291

© 2011 Conrad Electronic

Conditional Valuation 111

Connection Diagram Mega128 32

Connection Diagram Mega128 Appl. Board 55

Connection Diagram Mega128 CAN 39

Connection Diagram Mega32 25

Connection Diagram Mega32 Appl. Board 45

Conrad 4

Context Help 94

continue 111, 112, 116

Corrections 4

cos 197

Cosine 197

CPU AT90CAN128 36

CPU choosage 68

CPU Mega128 29

CPU Mega32 22

- D -
data bits 92

Data Types 103, 125

DCF_FRAME 170

DCF_INIT 171

DCF_Lib.cc 169

DCF_PULS 171

DCF_RTC.cc 169

DCF_START 172

DCF_SYNC 172

DCF77 169

Debugger 80

default 114

DirAcc_Read 175

DirAcc_Write 176

Direct_Access 175

Divider 220

Division 108, 130

Do 132, 133

do while 111

dword 103

- E -
Editor 70

Editor Settings 85

EEPROM 176, 177, 178, 179

EEPROM_Read 176

EEPROM_ReadFloat 177

EEPROM_ReadWord 177

EEPROM_Write 178

EEPROM_WriteFLoat 179

EEPROM_WriteWord 178

Else 113, 135

email 4

equal 110, 131

Event Counter 260

exclusive Or 109, 130

Exit 132, 133, 134

exp 197

Expressions 101, 123

Ext 183

Ext_IntDisable 185

Ext_IntEnable 184

external RAM 50, 97

- F -
fabs 198

FAQ 287

Fax 4

Firewall 91

Firmware 17

float 103

floor 198

For 112, 134

formatted print 247

Frequency Generation 261

Frequency Measurement 262

Functions 116, 137

- G -
Goto 113, 135

GPP 4

greater 110, 131

greater or equal 110, 131

- H -
Handling 2

Hardware 17, 76

Hardware Version 79

Help 94

C-Control Pro Mega Series292

© 2011 Conrad Electronic

History 4

- I -
I2C Status Codes 182

I2C_Init 179

I2C_Read_ACK 180

I2C_Read_NACK 180

I2C_Start 180

I2C_Status 181

I2C_Stop 181

I2C_Write 182

IDE 64

IDE Settings 89

Identifier 101, 123

If 113, 135

Insert Variable 82

Installation 11, 15

Instruction Block 101, 123

Instructions 101, 123

int 103

Integer 125

Intended use 3

Internal Functions 153

Internet Explorer 91

Internet Update 91

IntFunc_Lib.cc 153

Introduction 2

IRQ 183

IRQ Example 186

Irq_GetCount 185

Irq_SetVect 186

- J -
Jumper Mega128 Appl. Board 52

Jumperr Mega32 Appl. Board 43

- K -
Key_Init 187

Key_Scan 187

Key_TranslateKey 188

Keyboard Layout 85

Keyboard Shortcuts 74

- L -
LCD Matrix 19

LCD_ClearLCD 188

LCD_CursorOff 189

LCD_CursorOn 189

LCD_CursorPos 190

LCD_Init 190

LCD_Locate 191

LCD_SubInit 191

LCD_TestBusy 192

LCD_WriteChar 192

LCD_WriteCTRRegister 192

LCD_WriteDataRegister 193

LCD_WriteFloat 193

LCD_WriteRegister 194

LCD_WriteText 194

LCD_WriteWord 194

ldexp 199

left shift 109, 131

Liability 3

Library Management 69

ln 199

log 199

logical And 110

logical Not 110

logical Operators 110

logical Or 110

long 103

Loop While 132

- M -
Map File 99

Mega128 Application Board 49

Mega128 CAN Module 32

Mega128 Module 25

Mega128 Projectboard 60

Mega32 Application Board 39

Mega32 Module 19

Mega32 Projectboard 58

messages 65

Modulo 108, 130

Msg_WriteChar 173

Msg_WriteFloat 173

Index 293

© 2011 Conrad Electronic

Msg_WriteHex 173

Msg_WriteInt 174

Msg_WriteText 174

Msg_WriteWord 175

Multiplication 108, 130

- N -
New features 4

Next 134

next error 65

not equal 110, 131

- O -
Onewire Example 205

Onewire_Read 203

Onewire_Reset 204

Onewire_Write 205

Open Source 4

Operator Precedence 119

Operator Table 120, 141

Operators 108, 129

Options 85

Or 109, 130

Outputs 78

- P -
Pattern 76

Period Measurement 263

PIN 78

Pin Assignment Mega128 30

Pin Assignment Mega128 CAN 37

Pin Assignment Mega32 23

Pointer 116, 137

Port_DataDir 207

Port_DataDirBit 208

Port_Read 209

Port_ReadBit 210

Port_Toggle 211

Port_ToggleBit 211

Port_Write 212

Port_WriteBit 213

pow 200

Precedence 140

predefined arrays 104, 125

Predefined Symbols 98

Preprocessor 97

previous error 65

Print Preview 73

Program 100, 122

Program version 94

Project 65

Project Name 65

project options 68

projectfiles 66

Projects 65

Proxy 91

Pulse Measurement 263

Pulse Width Modulation 262

- R -
rand 202

RC5 215

RC5_Init 218

RC5_Read 219

RC5_Write 220

reference voltage 158, 159

Refresh Editor View 70

Regular Expressions 76

rename projects 66

Replace 72

reserved 121, 141

reserved Words 121, 141

right shift 109, 131

round 200

RS232 Interface 90

- S -
SDC Return Values 229

SDC_FClose 230

SDC_FOpen 230

SDC_FRead 231

SDC_FSeek 231

SDC_FSetDateTime 232

SDC_FStat 232

SDC_FSync 233

SDC_FTruncate 234

SDC_FWrite 234

C-Control Pro Mega Series294

© 2011 Conrad Electronic

SDC_GetFree 235

SDC_Init 235

SDC_MkDir 236

SDC_Rename 236

SDC_Unlink 237

SD-Card Example 237

Search 72

Select 136

serial Bootloader 17

Serial Example 227

Serial Example (IRQ) 227

Serial_Disable 222

Serial_Init 222

Serial_Init_IRQ 223

Serial_IRQ_Info 224

Serial_Read 225

Serial_ReadExt 225

Serial_Write 226

Serial_WriteText 226

Service 4

Servo 238

Servo Example 241

Servo_Init 239

Servo_Set 240

Sign 108, 130

sin 201

sine 201

Single 125

SizeOf 104, 125

Sleep 154

smaller 110, 131

smaller or equal 110, 131

Smart Tabulator 85

Spellchecking 89

SPI switch off 17

SPI_Disable 241

SPI_Enable 242

SPI_Read 243

SPI_ReadBuf 243

SPI_Write 243

SPI_WriteBuf 244

Splashscreen 89

sqrt 201

square root 201

SRAM 50, 97

srand 203

Start Program 77

Static 104, 125

stop bits 92

Str_Comp 244

Str_Copy 245

Str_Fill 245

Str_Isalnum 246

Str_Isalpha 246

Str_Len 247

Str_Printf 247

Str_Printf Example 252

Str_ReadFloat 248

Str_ReadInt 249

Str_ReadNum 249

Str_Substr 250

Str_WriteFloat 250

Str_WriteInt 251

Str_WriteWord 251

Strings 103, 104, 125, 244

Subtraction 108, 130

switch 114

Syntax Highlight 86

- T -
Tables 104, 125

tan 202

tangent 202

Terminal 84

Terminal Settings 92

thread options 67

Thread_Cycles 254

Thread_Delay 255

Thread_Info 255

Thread_Kill 256

Thread_Lock 256

Thread_MemFree 257

Thread_Resume 257

Thread_Signal 257

Thread_Start 258

Thread_Wait 258

Threads 252

Tile Horizontal 93

Tile Vertical 93

Timer 260

Timer Functions 264

Index 295

© 2011 Conrad Electronic

Timer_Disable 265

Timer_T0CNT 265

Timer_T0FRQ 265

Timer_T0GetCNT 266

Timer_T0PW 267

Timer_T0PWM 267

Timer_T0Start 268

Timer_T0Stop 268

Timer_T0Time 269

Timer_T1CNT 270

Timer_T1CNT_Int 270

Timer_T1FRQ 270

Timer_T1FRQX 271

Timer_T1GetCNT 271

Timer_T1GetPM 272

Timer_T1PM 273

Timer_T1PWA 272

Timer_T1PWB 273

Timer_T1PWM 274

Timer_T1PWMX 274

Timer_T1PWMY 275

Timer_T1Start 276

Timer_T1Stop 276

Timer_T1Time 276

Timer_T3CNT 277

Timer_T3CNT_Int 277

Timer_T3FRQ 278

Timer_T3FRQX 279

Timer_T3GetCNT 279

Timer_T3GetPM 279

Timer_T3PM 280

Timer_T3PWA 280

Timer_T3PWB 281

Timer_T3PWM 281

Timer_T3PWMX 282

Timer_T3PWMY 283

Timer_T3Start 283

Timer_T3Stop 284

Timer_T3Time 284

Timer_TickCount 285

Tool Settings 92

Tools 84

Transfer 77

Type Conversion 103, 125

- U -
unsigned char 103

unsigned int 103

USB 11

USB Interface 90

- V -
Variables 104, 125

Variables Window 82

Version Check 79

Visibility of Variables 104, 125

void 116

- W -
Warranty 3

While 116, 133

Window 93

Word 103, 125

	Important Notes
	Introduction
	Reading this operating manual
	Handling
	Intended use
	Warranty and Liability
	Service
	Open Source
	History

	Installation
	Applicationboard
	Software

	Hardware
	Firmware
	LCD Matrix
	Mega32 Module
	CPU
	Pin Assignment
	Connection Diagram

	Mega128 Module
	CPU
	Pin Assignment
	Connection Diagram

	Mega128 CAN Module
	CPU
	Pin Assignment
	Connection Diagram

	Mega32 Application Board
	Jumper Application Board
	Connection Diagram
	Component Parts Plan

	Mega128 Application Board
	Jumper Application Board
	Connection Diagram
	Component Parts Plan

	Mega32 Projectboard
	Mega128 Projectboard

	IDE
	Projects
	Create Projects
	Compile Projects
	Project Management
	Thread Options
	Project Options
	Library Management

	Editor
	Editor Functions
	Print Preview
	Keyboard Shortcuts
	Regular Expressions

	C-Control Hardware
	Start Program
	Outputs
	PIN Functions
	Version Check

	Debugger
	Breakpoints
	Array Window
	Variable Watch Window

	Tools
	Options
	Editor Settings
	Syntax Highlighting
	Compiler Presetting
	IDE Settings
	Interfaces
	Internet Update
	Terminal
	Tools

	Windows
	Help

	Compiler
	General Features
	External RAM
	Preprocessor
	Predefined Symbols

	Pragma Instructions
	Map File

	CompactC
	Program
	Instructions
	Data Types
	Variables
	Operators
	Arithmetic Operators
	Bit Operators
	Bit-Shift Operators
	In- /Decrement Operators
	Comparison Operators
	Logical Operators

	Control Structures
	Conditional Valuation
	do .. while
	for
	goto
	if .. else
	switch
	while

	Functions
	Tabellen
	Operator Precedence
	Operators
	Reserved Words

	BASIC
	Program
	Instructions
	Data Types
	Variables
	Operators
	Arithmetic Operators
	Bitoperators
	Bit-Shift Operators
	In- /Decrement Operators
	Comparison Operators

	Control Structures
	Do Loop While
	Do While
	For Next
	Goto
	If .. Else
	Select Case

	Functions
	Tables
	Operator Precedence
	Operators
	Reserved Words

	Assembler
	An Example
	Data Access
	Guideline

	ASCII Table

	Libraries
	Internal Functions
	General
	AbsDelay
	Sleep

	Analog-Comparator
	AComp
	AComp Example

	Analog-Digital-Converter
	ADC_Disable
	ADC_Read
	ADC_ReadInt
	ADC_Set
	ADC_SetInt
	ADC_StartInt

	CAN Bus
	CAN Examples
	CAN_Exit
	CAN_GetInfo
	CAN_Init
	CAN_Receive
	CAN_MObSend
	CAN_SetMOb

	Clock
	Clock_GetVal
	Clock_SetDate
	Clock_SetTime

	DCF 77
	DCF_FRAME
	DCF_INIT
	DCF_PULS
	DCF_START
	DCF_SYNC

	Debug
	Msg_WriteChar
	Msg_WriteFloat
	Msg_WriteHex
	Msg_WriteInt
	Msg_WriteText
	Msg_WriteWord

	Direct Access
	DirAcc_Read
	DirAcc_Write

	EEPROM
	EEPROM_Read
	EEPROM_ReadWord
	EEPROM_ReadFloat
	EEPROM_Write
	EEPROM_WriteWord
	EEPROM_WriteFloat

	I2C
	I2C_Init
	I2C_Read_ACK
	I2C_Read_NACK
	I2C_Start
	I2C_Status
	I2C_Stop
	I2C_Write
	I2C Status Table
	I2C Example

	Interrupt
	Ext_IntEnable
	Ext_IntDisable
	Irq_GetCount
	Irq_SetVect
	IRQ Example

	Keyboard
	Key_Init
	Key_Scan
	Key_TranslateKey

	LCD
	LCD_ClearLCD
	LCD_CursorOff
	LCD_CursorOn
	LCD_CursorPos
	LCD_Init
	LCD_Locate
	LCD_SubInit
	LCD_TestBusy
	LCD_WriteChar
	LCD_WriteCTRRegister
	LCD_WriteDataRegister
	LCD_WriteFloat
	LCD_WriteRegister
	LCD_WriteText
	LCD_WriteWord

	Math
	Floating Point
	acos
	asin
	atan
	ceil
	cos
	exp
	fabs
	floor
	ldexp
	ln
	log
	pow
	round
	sin
	sqrt
	tan

	Integer
	rand
	srand

	OneWire
	Onewire_Read
	Onewire_Reset
	Onewire_Write
	Onewire Example

	Port
	Port_DataDir
	Port_DataDirBit
	Port_Read
	Port_ReadBit
	Port_Toggle
	Port_ToggleBit
	Port_Write
	Port_WriteBit
	Port Example

	RC5
	RC5_Init
	RC5_Read
	RC5_Write

	RS232
	Divider
	Serial_Disable
	Serial_Init
	Serial_Init_IRQ
	Serial_IRQ_Info
	Serial_Read
	Serial_ReadExt
	Serial_Write
	Serial_WriteText
	Serial Example
	Serial Example (IRQ)

	SDCard
	SDC Return Values
	SDC_FClose
	SDC_FOpen
	SDC_FRead
	SDC_FSeek
	SDC_FSetDateTime
	SDC_FStat
	SDC_FSync
	SDC_FTruncate
	SDC_FWrite
	SDC_GetFree
	SDC_Init
	SDC_MkDir
	SDC_Rename
	SDC_Unlink
	SD-Card Example

	Servo
	Servo_Init
	Servo_Set
	Servo Example

	SPI
	SPI_Disable
	SPI_Enable
	SPI_Read
	SPI_ReadBuf
	SPI_Write
	SPI_WriteBuf

	Strings
	Str_Comp
	Str_Copy
	Str_Fill
	Str_Isalnum
	Str_Isalpha
	Str_Len
	Str_Printf
	Str_ReadFloat
	Str_ReadInt
	Str_ReadNum
	Str_Substr
	Str_WriteFloat
	Str_WriteInt
	Str_WriteWord
	Str_Printf Example

	Threads
	Thread_Cycles
	Thread_Delay
	Thread_Info
	Thread_Kill
	Thread_Lock
	Thread_MemFree
	Thread_Resume
	Thread_Signal
	Thread_Start
	Thread_Wait
	Thread Example
	Thread Example 2

	Timer
	Event Counter
	Frequency Generation
	Frequency Measurement
	Pulse Width Modulation
	Pulse & Period Measurement
	Timer Functions
	Timer_Disable
	Timer_T0CNT
	Timer_T0FRQ
	Timer_T0GetCNT
	Timer_T0PW
	Timer_T0PWM
	Timer_T0Start
	Timer_T0Stop
	Timer_T0Time
	Timer_T1CNT
	Timer_T1CNT_Int
	Timer_T1FRQ
	Timer_T1FRQX
	Timer_T1GetCNT
	Timer_T1GetPM
	Timer_T1PWA
	Timer_T1PM
	Timer_T1PWB
	Timer_T1PWM
	Timer_T1PWMX
	Timer_T1PWMY
	Timer_T1Start
	Timer_T1Stop
	Timer_T1Time
	Timer_T3CNT
	Timer_T3CNT_Int
	Timer_T3FRQ
	Timer_T3FRQX
	Timer_T3GetCNT
	Timer_T3GetPM
	Timer_T3PWA
	Timer_T3PM
	Timer_T3PWB
	Timer_T3PWM
	Timer_T3PWMX
	Timer_T3PWMY
	Timer_T3Start
	Timer_T3Stop
	Timer_T3Time
	Timer_TickCount

	FAQ

